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(G5.1)

Decide whether the following series converge.
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Suppose that (a,,)nen and (b, )nen are sequences of real numbers. Which of the following

statements are correct and which are false? (In the case where a statement is correct you
have to give a proof and in the case where it is false you have to give a counterexample).

o [e.e]
1. If the series »_ a, converges then ) a, converges absolutely.
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2. If the sequence (nay,)neny converges then the series > a, converges absolutely.
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< 1 for all n € N, then the series > a,, converges.
n=1

3. If




4. If a, > 0, b, > 0 for all n € N, lim I — 0 and > b, converges then > a,
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converges.
5.1f a, > 0, b, >0 for all n € N, lim Z—n = 0 and ) a, converges then > b,
converges. " = =
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For a sequence (a,)neny of real numbers define its associated sequence of arithmetic
means (b, )nen as follows
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for all n € N.
1. Show that if (a,)nen converges to a € R then (by,)nen converges to a as well.

2. Give an example of a divergent sequence (a,)nen such that the previous sequence
(b )nen is convergent.

Hint: Notice the following: if n > ng then

(al—a)—l—...(an—a)_(al—a)+...+(an0_1—a)+(ano—a)+...—|—(an—a)



