Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-11-12

5th Exercise Sheet Analysis I (engl.) Winter Term 2009/10

(G5.1)

Decide whether the following series converge.

1.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
,
2. $\sum_{n=0}^{\infty} \frac{2^n}{n!}$,
3. $\sum_{n=1}^{\infty} \frac{n^3 - 1}{2n^4 + 5n + 1}$
4. $\sum_{n=2}^{\infty} \frac{1}{n^2 - n}$.

(G5.2)

Suppose that $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are sequences of real numbers. Which of the following statements are correct and which are false? (In the case where a statement is correct you have to give a proof and in the case where it is false you have to give a counterexample).

1. If the series $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

2. If the sequence $(n^2 a_n)_{n \in \mathbb{N}}$ converges then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.

3. If $\left|\frac{a_{n+1}}{a_n}\right| < 1$ for all $n \in \mathbb{N}$, then the series $\sum_{n=1}^{\infty} a_n$ converges.

- 4. If $a_n > 0$, $b_n > 0$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges.
- 5. If $a_n > 0$, $b_n > 0$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} b_n$ converges.

(G5.3)

For a sequence $(a_n)_{n \in \mathbb{N}}$ of real numbers define its associated sequence of arithmetic means $(b_n)_{n \in \mathbb{N}}$ as follows

$$b_n := \frac{1}{n} \cdot \sum_{j=1}^n a_j = \frac{a_1 + \ldots + a_n}{n}$$

for all $n \in \mathbb{N}$.

- 1. Show that if $(a_n)_{n\in\mathbb{N}}$ converges to $a\in\mathbb{R}$ then $(b_n)_{n\in\mathbb{N}}$ converges to a as well.
- 2. Give an example of a divergent sequence $(a_n)_{n \in \mathbb{N}}$ such that the previous sequence $(b_n)_{n \in \mathbb{N}}$ is convergent.

Hint: Notice the following: if $n \ge n_0$ then

$$\frac{(a_1-a)+\dots(a_n-a)}{n} = \frac{(a_1-a)+\dots+(a_{n_0-1}-a)}{n} + \frac{(a_{n_0}-a)+\dots+(a_n-a)}{n}$$