Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-11-05

4th Exercise Sheet Analysis I (engl.) Winter Term 2009/10

(G4.1)

- (a) Let $(n_k)_{k \in \mathbb{N}}$ be a sequence of natural numbers such that $n_1 < n_2 < \ldots < n_k < \ldots$. Prove that $n_k \geq k$ for all $k \in \mathbb{N}$.
- (b) Prove that if $a_n \xrightarrow{n \to \infty} a$ and $(a_{n_k})_{k \in \mathbb{N}}$ is a subsequence of $(a_n)_{n \in \mathbb{N}}$ then $a_{n_k} \xrightarrow{k \to \infty} a$.
- (c) Find all cluster points of the following sequences:

(i)
$$a_n := (-1)^n \frac{1}{\sqrt{n}}, n \in \mathbb{N},$$

(ii) $b_n = \begin{cases} 1 + \frac{1}{2^n}, & \text{if } n \in \mathbb{N} \text{ is of the form } 3k, \\ 2 + \frac{1}{n}, & \text{if } n \in \mathbb{N} \text{ is of the form } 3k + 1, \\ 2, & \text{if } n \in \mathbb{N} \text{ is of the form } 3k + 2. \end{cases}$

(G4.2)

(a) Decide whether the following series are convergent:

(i)
$$\sum_{n=1}^{\infty} (-1)^n$$
,
(ii) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$.

(b) Find the sums of the following series:

(i)
$$\sum_{n=0}^{\infty} \frac{5 \cdot 3^n}{4^{n+2}}$$
,
(ii) $\sum_{k=2}^{\infty} \frac{2}{k^2 - 1}$.

(G4.3)

Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be bounded real sequences.

(a) Show that

$$\liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n \leq \liminf_{n \to \infty} (a_n + b_n) \leq \limsup_{n \to \infty} (a_n + b_n)$$
$$\leq \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

(b) Give an example with two sequences $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ s.t. we in (a) have "<" in all cases.