Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

2009-11-05

4th Exercise Sheet Analysis I (engl.)
 Winter Term 2009/10

(G4.1)
(a) Let $\left(n_{k}\right)_{k \in \mathbb{N}}$ be a sequence of natural numbers such that $n_{1}<n_{2}<\ldots<n_{k}<\ldots$. Prove that $n_{k} \geq k$ for all $k \in \mathbb{N}$.
(b) Prove that if $a_{n} \xrightarrow{n \rightarrow \infty} a$ and $\left(a_{n_{k}}\right)_{k \in \mathbb{N}}$ is a subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ then $a_{n_{k}} \xrightarrow{k \rightarrow \infty} a$.
(c) Find all cluster points of the following sequences:
(i) $a_{n}:=(-1)^{n} \frac{1}{\sqrt{n}}, n \in \mathbb{N}$,
(ii) $b_{n}= \begin{cases}1+\frac{1}{2^{n}}, & \text { if } n \in \mathbb{N} \text { is of the form } 3 k, \\ 2+\frac{1}{n}, & \text { if } n \in \mathbb{N} \text { is of the form } 3 k+1, \\ 2, & \text { if } n \in \mathbb{N} \text { is of the form } 3 k+2 .\end{cases}$
(a) Decide whether the following series are convergent:
(i) $\sum_{n=1}^{\infty}(-1)^{n}$,
(ii) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$.
(b) Find the sums of the following series:
(i) $\sum_{n=0}^{\infty} \frac{5 \cdot 3^{n}}{4^{n+2}}$,
(ii) $\sum_{k=2}^{\infty} \frac{2}{k^{2}-1}$.

(G4.3)

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be bounded real sequences.
(a) Show that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} a_{n}+\liminf \inf _{n \rightarrow \infty} b_{n} & \leq \liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \\
& \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
\end{aligned}
$$

(b) Give an example with two sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ s.t. we in (a) have " $<$ " in all cases.

