Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-10-29

3rd Exercise Sheet Analysis I (engl.) Winter Term 2009/10

(G3.1)

Decide whether the following sequences are convergent and determine the limits in case these exist.

1. $a_n := \frac{n^3 - 2n + 1}{5n^3 + n^2 + 1}$, $n \in \mathbb{N}_0$. 2. $b_n := \frac{(-1)^n}{n}$, $n \in \mathbb{N}_0$, 3. $c_n := \sqrt{n^2 + 2} - \sqrt{n^2 + 1}$, $n \in \mathbb{N}_0$, 4. $d_n := (1 + \frac{1}{n})^{n^2}$, $n \in \mathbb{N}$,

(G3.2)

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be sequences in \mathbb{R} . Decide whether the following statements are true in general. Give in each case a proof or a counterexample.

- 1. If $(a_n)_{n \in \mathbb{N}}$ is bounded then $a_n \cdot \frac{1}{n} \to 0$.
- 2. If $(a_n)_{n\in\mathbb{N}}$ is bounded and $(b_n)_{n\in\mathbb{N}}$ is convergent then $(a_n \cdot b_n)_{n\in\mathbb{N}}$ is also convergent.
- 3. If $(a_n)_{n \in \mathbb{N}}$ is divergent and $(b_n)_{n \in \mathbb{N}}$ is divergent then $(a_n + b_n)_{n \in \mathbb{N}}$ is divergent.
- 4. If $(a_n)_{n\in\mathbb{N}}$ is convergent and $(a_n + b_n)_{n\in\mathbb{N}}$ is convergent then $(b_n)_{n\in\mathbb{N}}$ is convergent.

(G3.3)

(i) Prove that the function f : [0, +∞) → ℝ : f(x) = x² is injective but not surjective.
(ii) Prove that the function g : ℝ → [0, +∞) : g(x) = x² is surjective but not injective.

2. Define the sequence $(a_n)_{n \in \mathbb{N}}$ by recursion as follows: $a_1 = 1, a_{n+1} = 6 \cdot \frac{1+a_n}{7+a_n}, n \in \mathbb{N}$.

Prove that

- (i) $1 \le a_n \le 2$ for all $n \in \mathbb{N}$, (ii) $a_n \le a_{n+1}$ for all $n \in \mathbb{N}$,
- $(n) a_n \leq a_{n+1}$ for all n
- (iii) $a_n \to 2$.