Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

2009-10-29

3rd Exercise Sheet Analysis I (engl.)
 Winter Term 2009/10

(G3.1)
Decide whether the following sequences are convergent and determine the limits in case these exist.

1. $a_{n}:=\frac{n^{3}-2 n+1}{5 n^{3}+n^{2}+1}, n \in \mathbb{N}_{0}$.
2. $b_{n}:=\frac{(-1)^{n}}{n}, n \in \mathbb{N}_{0}$,
3. $c_{n}:=\sqrt{n^{2}+2}-\sqrt{n^{2}+1}, n \in \mathbb{N}_{0}$,
4. $d_{n}:=\left(1+\frac{1}{n}\right)^{n^{2}}, n \in \mathbb{N}$,
(G3.2)

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be sequences in \mathbb{R}. Decide whether the following statements are true in general. Give in each case a proof or a counterexample.

1. If $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded then $a_{n} \cdot \frac{1}{n} \rightarrow 0$.
2. If $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded and $\left(b_{n}\right)_{n \in \mathbb{N}}$ is convergent then $\left(a_{n} \cdot b_{n}\right)_{n \in \mathbb{N}}$ is also convergent.
3. If $\left(a_{n}\right)_{n \in \mathbb{N}}$ is divergent and $\left(b_{n}\right)_{n \in \mathbb{N}}$ is divergent then $\left(a_{n}+b_{n}\right)_{n \in \mathbb{N}}$ is divergent.
4. If $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent and $\left(a_{n}+b_{n}\right)_{n \in \mathbb{N}}$ is convergent then $\left(b_{n}\right)_{n \in \mathbb{N}}$ is convergent.
5. (i) Prove that the function $f:[0,+\infty) \rightarrow \mathbb{R}: f(x)=x^{2}$ is injective but not surjective. (ii) Prove that the function $g: \mathbb{R} \rightarrow[0,+\infty): g(x)=x^{2}$ is surjective but not injective.
6. Define the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ by recursion as follows: $a_{1}=1, a_{n+1}=6 \cdot \frac{1+a_{n}}{7+a_{n}}, n \in \mathbb{N}$.

Prove that
(i) $1 \leq a_{n} \leq 2$ for all $n \in \mathbb{N}$, (ii) $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$, (iii) $a_{n} \rightarrow 2$.

