2nd Exercise sheet Analysis I (engl.)
 Winter Term 2009/10

(G2.1)
(a) Calculate $(12+5 i)(2+3 i)$ and $\bar{z}, \operatorname{Re} z, \operatorname{Im} z, \operatorname{Re} \frac{1}{z}$ and $\operatorname{Im} \frac{1}{z}$ for $z:=\frac{12+5 i}{2+3 i}$.
(b) Show that $\left|\frac{1+i t}{1-i t}\right|=1$ for all $t \in \mathbb{R}$.
(c) Make sketches of the following sets in the Gaussian plane.

$$
M_{1}:=\{z \in \mathbb{C}:|z-1| \leq 1\}, \quad M_{2}:=\{z \in \mathbb{C}:|z-1| \leq|z+1|\} .
$$

(G2.2)
Prove Lemma 1.21 from chapter 1 in the lecture notes:
Let $M \subset \mathbb{R}$ and $-M:=\{-m: m \in M\}$. Then the following statements hold:
(a) M is bounded from below $\Leftrightarrow-M$ is bounded from above.
(b) Every nonempty set M that is bounded from below has an infimum. The infimum is uniquely determined and denoted by $\inf M$.
(c) $M \neq \emptyset$ is bounded from below $\Rightarrow \inf M=-\sup (-M)$.
(G2.3)
Decide whether the following sets of real numbers are bounded, and determine the supremum, infimum, maximum and minimum of each in case these exist.
(a) $A:=\left\{x+\frac{1}{x}: \frac{1}{2}<x \leq 2\right\}$.
(b) $B:=\left\{x \in \mathbb{R}\right.$: There exists a $y \in \mathbb{R}$ with $\left.(x+2)^{2}+4 y^{2}<9\right\}$.

