Fachbereich Mathematik Prof. Dr. W. Trebels E. Briseid

2009-10-15

1st Exercise sheet Analysis I (engl.) Winter Term 2009/10

(G1.1)

Prove the following statement on the basis of the axioms of \mathbb{R} .

Let $a, b \in \mathbb{R}$ and $a \neq 0$. If x, y are real numbers with $a \cdot x = b$ and $a \cdot y = b$, then x = y.

(G1.2) (Inverse Triangle Inequality)

Prove: For $x, y \in \mathbb{R}$ we have

$$\left||x| - |y|\right| \le \left|x - y\right|.$$

(G1.3)

Prove the following for $x, y \in \mathbb{R}$.

- (a) If x < y, then $x < \frac{x+y}{2} < y$.
- (b) $\frac{x}{y} + \frac{y}{x} \ge 2$, for all $x, y \in \mathbb{R}, x, y > 0$.
- (c) Let x, y be real numbers with x < y. Then there exists a real number z with x < z < y.

(G1.4) (Induction)

- (a) We consider a chessboard with each side of length 2^n (where the sides of each square are of length 1), and we remove one arbitrary square. Prove that one can exactly cover the chessboard (minus the one square) with non-overlapping "L"-shaped pieces of cardboard, each piece covering three squares.
- (b) Prove that for any natural number n the number $2^{2n} 1$ is divisible by 3.