1st Exercise sheet Analysis I (engl.)
 Winter Term 2009/10

(G1.1)
Prove the following statement on the basis of the axioms of \mathbb{R}.
Let $a, b \in \mathbb{R}$ and $a \neq 0$. If x, y are real numbers with $a \cdot x=b$ and $a \cdot y=b$, then $x=y$.

(G1.2) (Inverse Triangle Inequality)

Prove: For $x, y \in \mathbb{R}$ we have

$$
||x|-|y|| \leq|x-y| .
$$

(G1.3)

Prove the following for $x, y \in \mathbb{R}$.
(a) If $x<y$, then $x<\frac{x+y}{2}<y$.
(b) $\frac{x}{y}+\frac{y}{x} \geq 2, \quad$ for all $x, y \in \mathbb{R}, x, y>0$.
(c) Let x, y be real numbers with $x<y$. Then there exists a real number z with $x<z<y$.

(G1.4) (Induction)

(a) We consider a chessboard with each side of length 2^{n} (where the sides of each square are of length 1), and we remove one arbitrary square. Prove that one can exactly cover the chessboard (minus the one square) with non-overlapping "L"-shaped pieces of cardboard, each piece covering three squares.
(b) Prove that for any natural number n the number $2^{2 n}-1$ is divisible by 3 .

