Fachbereich Mathematik

15th Tutorial Analysis I (engl.)
 Winter Term 2009/10

In this tutorial we deal with the concepts "countable" and "uncountable". We make the following definitions: A set X is called countable if $X=\emptyset$ or if there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in X which is surjective, i.e., such that $X=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. A set X is called uncountable if it is not countable.

Some examples of countable sets are the set of the integers \mathbb{N}, the set of even numbers $\{0,2,4, \ldots\}=\left\{a_{k} / a_{k}=2(k-1), k \in \mathbb{N}\right\}$ and the set of integers $\{0, \pm 1, \pm 2, \ldots\}=$ $\left\{a_{k} / a_{k}=n\right.$ if $k=2(n-1)$ and $a_{k}=-n$ if $k=2(n-1)+1$ for some $\left.n \in \mathbb{N}\right\}$.
(T15.1)

Let A be a countable set, and let $B \subseteq A$ be nonempty. Prove that B is countable.
(T15.2)
We will now show that \mathbb{Q} is countable. We do this in three steps:
(a) Show that it is enough to prove that the set of positive rational numbers is countable.
(b) Find a method to place all fractions p / q with $p, q \in \mathbb{N}$ in a "quadratic" grid:

- • • ...
- •• ...
- •• ...
$\vdots \quad \vdots \quad \ddots$
(c) Prove that \mathbb{Q} is countable.

(T15.3)

1. Work over the proof below of the following statement.

The set X of all sequences in $\{0,1\}$ is uncountable.
Proof: Assume that X is countable, i.e., $X=\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$, where $f_{j}=\left(a_{j 1}, a_{j 2}, a_{j 3}, \ldots\right)$ and $a_{j k} \in\{0,1\}$ for all $j, k \in \mathbb{N}$. We now define a sequence $\left(a_{j}\right)_{j \in \mathbb{N}}$ in $\{0,1\}$ by letting

$$
a_{j}:= \begin{cases}1, & \text { if } a_{j j}=0 \\ 0, & \text { if } a_{j j}=1\end{cases}
$$

for each $j \in \mathbb{N}$. Then $\left(a_{j}\right)_{j \in \mathbb{N}}$ is a sequence in X, and so by assumption there is an $m_{0} \in \mathbb{N}$ s.t. $\left(a_{j}\right)_{j \in \mathbb{N}}=f_{m_{0}}$. But then $a_{m_{0}}=a_{m_{0} m_{0}}$, which by the construction of $\left(a_{j}\right)_{j \in \mathbb{N}}$ is a contradiction.

Remark: The method of proof used above is called Cantor's diagonal argument.
2. Use Cantor's diagonal argument to prove that the interval $[0,1$) (and therefore all of \mathbb{R}) is uncountable.

