Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2010-02-09

15th Tutorial Analysis I (engl.) Winter Term 2009/10

In this tutorial we deal with the concepts "countable" and "uncountable". We make the following definitions: A set X is called *countable* if $X = \emptyset$ or if there exists a sequence $(a_n)_{n \in \mathbb{N}}$ in X which is surjective, i.e., such that $X = \{a_1, a_2, a_3, \ldots\}$. A set X is called *uncountable* if it is not countable.

Some examples of countable sets are the set of the integers \mathbb{N} , the set of even numbers $\{0, 2, 4, \ldots\} = \{a_k \mid a_k = 2(k-1), k \in \mathbb{N}\}$ and the set of integers $\{0, \pm 1, \pm 2, \ldots\} = \{a_k \mid a_k = n \text{ if } k = 2(n-1) \text{ and } a_k = -n \text{ if } k = 2(n-1) + 1 \text{ for some } n \in \mathbb{N}\}.$

(T15.1)

Let A be a countable set, and let $B \subseteq A$ be nonempty. Prove that B is countable.

(T15.2)

We will now show that \mathbb{Q} is countable. We do this in three steps:

- (a) Show that it is enough to prove that the set of positive rational numbers is countable.
- (b) Find a method to place all fractions p/q with $p,q \in \mathbb{N}$ in a "quadratic" grid:
 - • ...
 - : : : ...
- (c) Prove that \mathbb{Q} is countable.

(T15.3)

1. Work over the proof below of the following statement.

The set X of all sequences in $\{0, 1\}$ is uncountable.

Proof: Assume that X is countable, i.e., $X = \{f_1, f_2, f_3, \ldots\}$, where $f_j = (a_{j1}, a_{j2}, a_{j3}, \ldots)$ and $a_{jk} \in \{0, 1\}$ for all $j, k \in \mathbb{N}$. We now define a sequence $(a_j)_{j \in \mathbb{N}}$ in $\{0, 1\}$ by letting

$$a_j := \begin{cases} 1, & \text{if } a_{jj} = 0, \\ 0, & \text{if } a_{jj} = 1 \end{cases}$$

for each $j \in \mathbb{N}$. Then $(a_j)_{j \in \mathbb{N}}$ is a sequence in X, and so by assumption there is an $m_0 \in \mathbb{N}$ s.t. $(a_j)_{j \in \mathbb{N}} = f_{m_0}$. But then $a_{m_0} = a_{m_0m_0}$, which by the construction of $(a_j)_{j \in \mathbb{N}}$ is a contradiction.

Remark: The method of proof used above is called Cantor's diagonal argument.

2. Use Cantor's diagonal argument to prove that the interval [0, 1) (and therefore all of \mathbb{R}) is uncountable.