13th Tutorial Analysis I (engl.)
 Winter Term 2009/10

(T13.1) Leibniz' formula

1. Let $D \subset \mathbb{R}$ be open, $f, g: D \rightarrow \mathbb{R}$ be two n-times differentiable functions. Prove

Leibniz' formula

$$
\begin{equation*}
\frac{d^{n}}{d x^{n}}(f \cdot g)(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)}(x) g^{(k)}(x) . \tag{1}
\end{equation*}
$$

Hint. Proceed analogously to the derivation of the binomial formula.
2. Calculate for $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{3} e^{x}$ the thousandth derivative $f^{(1000)}$.

(T13.2)

Consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
g(x)= \begin{cases}e^{-1 / x^{2}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

(a) Show that g is infinitely often differentiable on all of \mathbb{R}. Further, calculate $g^{(n)}(0)$ for all $n \in \mathbb{N}$ and determine the Taylor series of g in the origin. Is it the case that $\lim _{n \rightarrow \infty}\left(R_{n} g\right)(x, 0)=0$ holds in a neighborhood of 0 ?
(b) Determine all the zeros as well as all global and local extremal values of g. Further calculate

$$
\lim _{x \rightarrow \infty} g(x) \text { and } \lim _{x \rightarrow-\infty} g(x)
$$

and sketch the graph of g.

