12th Tutorial Analysis I (engl.)
 Winter Term 2009/10

(T12.1)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called even (resp. odd) if for all $x \in \mathbb{R}$ we have $f(x)=f(-x)$ (resp. $f(x)=-f(-x)$). Show that:
(a) If f is differentiable and even, then f^{\prime} is odd.
(b) If f is differentiable and odd, then f^{\prime} is even.

(T12.2)

(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which satisfies $|f(x)| \leq x^{2}$ for all $x \in \mathbb{R}$. Prove that f is differentiable in $x=0$ and find $f^{\prime}(0)$.
(b) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable in $x=0$ but discontinuous in every other point.
(T12.3)
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function with $f(a)=f(b)=0$ which is continuous on $[a, b]$ and differentiable on (a, b). Prove that there exists a number $\xi \in(a, b)$ with $f^{\prime}(\xi)=f(\xi)$.

Hint: Consider the function $x \mapsto f(x) \mathrm{e}^{-x}$.

