Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

2009-12-08

9th Tutorial Analysis I (engl.)
 Winter Term 2009/10

(T9.1)
Let $f:(-1, \infty) \rightarrow \mathbb{R}, f(x)=\frac{x}{1+x}$ be given. Determine domain and range in such a way that (if necessary the restriction of) the function is bijective. Present the inverse function in an explicit way. Is the inverse continuous?
(T9.2)
Remains Theorem 2.15 Chap. 3 true, if one drops the hypothesis that the $A_{j}, j \in \mathbb{N}$, are closed?
(T9.3)
Sketch the following "unit balls" in \mathbb{R}^{2} :

$$
\left\{\vec{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{1}\right|+\left|x_{2}\right|<1\right\}, \quad\left\{\vec{x}: \sqrt{x_{1}^{2}+x_{2}^{2}}<1\right\}, \quad\left\{\vec{x}: \max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)<1\right\} .
$$

(T9.4)

Let $m \in \mathbb{N}$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function such that:

1. $f(x)=0 \Longrightarrow x=0$,
2. $f(t x)=t^{m} f(x)$ for $x \in \mathbb{R}^{n}, t>0$.

Prove that there exists a constant $C>0$ such that

$$
|f(x)| \geq C|x|^{m}, \quad x \in \mathbb{R}^{n} .
$$

Hint: Consider f on the set $\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$ and apply Theorem 3.9 Chap. 3.

