Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-11-24

7th Tutorial Analysis I (engl.) Winter Term 2009/10

(T7.1)

Let $\sum_{n=0}^{\infty} a_n z^n$ be a power series with radius of convergence $r \in (0, \infty)$.

- (a) Show that the power series $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$ has radius of convergence ∞ .
- (b) Let $f(z) := \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$ for $z \in \mathbb{C}$. Prove that for each $s \in (0, r)$ there exists a constant M(s) > 0 s.t. $|f(z)| \le M(s) \exp(|z|/s).$

(T7.2)

Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let $x_0 \in \mathbb{R}$. Assume that f is continuous at x_0 and that $f(x_0) > 0$. Prove that there exists $\delta > 0$ such that f(x) > 0 for all $x \in (x_0 - \delta, x_0 + \delta)$.

(T7.3)

Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f(0) = 1 and such that $f(x+y) \leq f(x) \cdot f(y)$ for all $x, y \in \mathbb{R}$. Prove that if f is continuous at 0 then f is continuous.