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(T6.1)

Decide whether the following series are convergent. Decide also whether they are ab-
solutely convergent.
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(T6.2)

Let (an)n∈N be a sequence of positive real numbers. Assume that the series
∑∞

n=1 an

converges. Does it follow that also the series
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converge?



(T6.3)

Let (an)n∈N be a sequence of positive real numbers. Define

dn := n

(
1− an+1

an

)
.

Prove:

1. (Raabe’s criterion) If there exist N0 ∈ N and β > 1 such that dn ≥ β for all n ≥ N0,
then

∑∞
n=1 an converges.

Hint: First show that

(β − 1)an ≤ (n− 1)an − nan+1, n ≥ N0.

2. The hypothesis of the ratio test implies the hypothesis of the Raabe criterion. In
other words: If one can show that a series

∑∞
n=1 an converges by using the ratio test,

then one can also show this by using Raabe’s criterion.


