4th Tutorial Analysis I (engl.) Winter Term 2009/10

(T4.1)
Let X and Y be sets, and let $f: X \rightarrow Y$ be a mapping. Let furthermore $A, B \subseteq X$.
(a) Show that $f(A \cup B)=f(A) \cup f(B)$.
(b) Show that $f(A \cap B) \subseteq f(A) \cap f(B)$.
(c) Give an example where $f(A \cap B) \neq f(A) \cap f(B)$.

(T4.2)

Let $\left(a_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sequence of complex numbers. Decide for each of the following five criteria whether they imply that $\left(a_{n}\right)_{n \in \mathbb{N}_{0}}$ is a null sequence: For every $\varepsilon>0$ there exists an $N_{0} \in \mathbb{N}$ such that we for all $n \geq N_{0}$ have:
(a) $\left|a_{n}+a_{n+1}\right|<\varepsilon$,
(b) $\left|a_{n}\right|<2 \varepsilon^{4}$,
(c) $\left|a_{n} \cdot a_{n+1}\right|<\varepsilon$,
(d) $\left|a_{n}^{2}+a_{n}\right|<\varepsilon$,
(e) $\left|a_{n} \cdot a_{n+m}\right|<\varepsilon$ for all $m \in \mathbb{N}$.

Give in each case a proof or a counterexample.
(T4.3)
(a) Prove the Sandwich Theorem:

Let $\left(a_{n}\right)_{n \in \mathbb{N}_{0}},\left(b_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(c_{n}\right)_{n \in \mathbb{N}_{0}}$ be real sequences. If $\left(a_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}_{0}}$ are convergent with $\lim _{n \rightarrow \infty} a_{n}=a=\lim _{n \rightarrow \infty} b_{n}$ for some $a \in \mathbb{R}$, and if there exists an $n_{0} \in \mathbb{N}$ s.t.

$$
a_{n} \leq c_{n} \leq b_{n} \text { for all } n \geq n_{0},
$$

then also $\left(c_{n}\right)_{n \in \mathbb{N}_{0}}$ is convergent, and $\lim _{n \rightarrow \infty} c_{n}=a$.
(b) Find the following limit by using the theorem above:

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+3}}
$$

