Fachbereich Mathematik

Prof. Dr. J.H. Bruinier Martin Fuchssteiner Eric Hofmann Fredrik Strömberg

Lineare Algebra II

10. Tutorium mit Lösungshinweisen

(T 42) Symplektische Räume

Es sei V ein endlichdimensionaler reeller Vektorraum und $\omega: V \times V \to \mathbb{R}$ eine schiefsymmetrische nicht ausgeartete Bilinearform. Zeigen sie, daß die Dimension von V gerade sein muß.

LÖSUNG:

Die Bilinearform ω ist eine **symplektische Form**. Somit gibt es eine symplektische Basis $u_1, \ldots, u_n, v_1, \ldots, v_n$ von V. Die Dimension von V ist somit 2n und daher gerade.

(T 43) Zurückgezogene Formen

Es sei $\Psi:V\to W$ ein Homomorphismus zwischen endlichdimensionalen reellen Vektorräumen und $\omega:W\times W\to\mathbb{R}$ eine Bilinearform auf W. Zeigen Sie, daß die zurückgezogene Form

$$\Psi^*\omega: V \times V \to \mathbb{R}, (v, v') \mapsto \omega(\Psi(v), \Psi(v'))$$

eine Bilinearform auf V ist.

LÖSUNG:

Dies folgt aus der Linearität von Ψ und der Bilinearität von ω : Für Vektoren v_1, v_2, v_1', v_2' aus V und Skalare $\lambda, \mu \in \mathbb{R}$ gilt

$$\begin{split} \Psi^* \omega (\lambda v_1 + v_2, \mu v_1' + v_2') &= \omega (\Psi(\lambda v_1 + v_2), \Psi(\mu v_1' + v_2)) \\ &= \omega (\lambda \Psi(v_1) + \Psi(v_2), \mu \psi(v_1') + \Psi(v_2')) \quad \text{da Ψ linear ist.} \\ &= \lambda \mu \omega (\Psi(v_1), \Psi(v_1')) + \lambda \omega (\Psi(v_1), \Psi(v_2')) \\ &+ \mu \omega (\Psi(v_2), \Psi(v_1')) + \omega (\Psi(v_2), \Psi(v_2')), \end{split}$$

da ω bilinear ist. Somit ist $\Psi^*\omega$ eine bilinearform auf V.

Definition: Ein *linearer Symplektomorphismus* eines symplektischen Raumes (V, ω) ist ein Isomorphismsus $\Psi : V \xrightarrow{\cong} V$ mit der Eigenschaft $\Psi^* \omega = \omega$.

(T 44) Symplektische Räume

Zeigen Sie, daß die Symplektomorphismen eines Symplektischen Raumes eine Gruppe bilden.

LÖSUNG:

Es sei $\mathbf{Symp}(V,\omega)$ die Menge aller Symplektomorphismen von V. Sind Ψ und Φ Symplektomorphismen von V so gilt

$$(\Psi \circ \Phi)^* \omega = (\Psi^* \Phi^*) \omega = \Psi^* (\Phi^* \omega) = \Psi^* \omega = \omega.$$

Somit ist die Verknüpfung zweier Symplektomorphismen wieder ein Symplektomorphismus. Für die Identitaät id_V gilt $\mathrm{id}_V^*\omega = \omega$, d.h. die Identitat id_V ist ein neutrales Element in $\mathrm{Symp}(V,\omega)$. Es bleibt nur noch zu zeigen, daß das Inverse eines Symplektomorphismus Ψ wieder eine Symplektomorphismus ist. Ist ψ ein Symplektomorphismus und sind v,v' Vektoren aus V, so gilt

$$(\Psi^{-1})^*\omega(v,v') = \omega(\Psi^{-1}(v),\Psi^{-1}(v')) = \Psi^*\omega(\Psi^{-1}(v),\Psi^{-1}(v')) = \omega(\Psi\Psi^{-1}(v),\Psi\Psi^{-1}(v')) = \omega(v,v').$$

Somit ist Ψ^{-1} ein Symplektomorphismus und dieser ist das Inverse von Ψ in $\mathbf{Symp}(V,\omega)$. Die Menge $\mathbf{Symp}(V,\omega)$ ist somit eine Gruppe.

Defintion Das symplektische Komplement W^{ω} eines Untervektorrraumes W eines symplektischen Raumes (V, ω) ist der Untervektorraum

$$W^{\omega} := \{ v \in V \mid \forall w \in W : \omega(v, w) = 0 \}.$$

Eine Untervektorraum W heißt Lagrange-Untervektorraum, falls $W^{\omega}=W$ gilt.

(T 45) Symplektische Räume

Es sei ω_0 die symplektische Form auf \mathbb{R}^{2n} , welche bezüglich der kanonischen Basis durch die Gram-Matrix

 $J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$

beschrieben wird. Geben sie eine symplektische Basis und zwei verschiedene Lagrange-Untervektorräume L_1 und L_2 an. Können Sie Lagrange-Untervektorräume L_1 und L_2 finden, so daß $\mathbb{R}^{2n} = L_1 \oplus L_2$ gilt?

LÖSUNG:

Die standard-symplektische Basis besteht aus den Vektoren e_1, \ldots, e_n und e_{n+1}, \ldots, e_{2n} der Standardbasis des \mathbb{R}^{2n} . Die Untervektorräume $L_1 := \langle e_1, \ldots, e_n \rangle$ und $L_2 := \langle e_{n+1}, \ldots, e_{2n} \rangle$ sind somit Lagrange-Untervektorräume und es gilt $\mathbb{R}^{2n} = L_1 \oplus L_2$.

(T 46) Bilinearformen

Es seien β_1 und β_2 Bilinearformen auf dem endlichdimensionalen rellen Vektorraum V. Beweisen Sie:

- (a) Ist β_1 nicht ausgeartet, so gilt det $A \neq 0$ für jede Gram-Matrix A von β_1 .
- (b) Ist β_1 symmetrisch, so gibt es eine Basis v_1, \ldots, v_n von V bezüglich welcher die Gram-Matrix zu β_1 eine Diagonalmatrix ist.

LÖSUNG:

- (a) Dies wurde in Aufgabe T31 schon bewiesen.
- (b) Ist β_1 symmetrisch, so ist die Gram Matrix A bezüglich einer beliebigen Basis v'_1, \ldots, v'_n von V symmetrisch und damit diagonalisierbar. Es gibt somit eine Basis v_1, \ldots, v_n von V bezüglich welcher die Form β_1 durch eine Diagonalmatrix beschrieben wird.