

Ordinary Newton method

- For general nonlinear problems:

$$
F^{\prime}\left(x^{k}\right) \Delta x^{k}=-F\left(x^{k}\right), x^{k+1}=x^{k}+\Delta x^{k}
$$

- For system of n nonlinear equations Jacobian matrix is required
- First we compute the Newton corrections Δx^{k} and then improve the iterates x^{k} to obtain x^{k+1}

Simplified Newton method

- Keeps the initial derivative throughout the whole iteration:

$$
F^{\prime}\left(x^{0}\right) \overline{\Delta x}^{k}=-F\left(x^{k}\right), \quad x^{k+1}=x^{k}+\overline{\Delta x}^{k}
$$

- Saves computational cost per iteration

Newton-like methods

- In finite dimension, the Jacobian matrix is:
- Replaced by some fixed 'close by' Jacobian $F^{\prime}(z), z \neq x^{0}$
- Approximate $F^{\prime}\left(x^{k}\right)$ by $M\left(x^{k}\right)$

$$
M\left(x^{k}\right) \delta x^{k}=-F\left(x^{k}\right), \quad x^{k+1}=x^{k}+\delta x^{k}
$$

Exact Newton methods

- When the equation

$$
F^{\prime}\left(x^{k}\right) \Delta x^{k}=-F\left(x^{k}\right)
$$

can be solved using direct elimination methods, we speak of exact Newton methods

- Erroneous when scaling issues are ignored

Local versus global Newton methods

- Local Newton methods require sufficiently good initial guess
- Global Newton methods compensate by virtue of damping or adaptive trust region strategies
- Exact global Newton codes:
- NLEQ-RES - residual based
- NLEQ-ERR - error oriented
- NLEQ-OPT - convex optimization

Inexact Newton methods

- Inner iteration

$$
\begin{aligned}
& F^{\prime}\left(x^{k}\right) \delta x_{i}^{k}=-F\left(x^{k}\right)+r_{i}^{k} \\
& x_{i}^{k+1}=x^{k}+\delta x_{i}^{k}
\end{aligned}
$$

- Outer iteration

$$
x^{k+1}=x_{i}^{k+1}
$$

- In comparison with exact Newton methods an error arises: $\quad \delta x^{k}-\Delta x^{k}$
- GIANT - Global Inexact Affine invariant Newton Techniques

Preconditioning

- Direct elimination of 'similar’ linear systems

$$
C_{L} F^{\prime}\left(x^{k}\right) C_{R} C_{R}^{-1}\left(\delta x_{i}^{k}-\Delta x_{i}^{k}\right)=C_{L} r_{i}^{k}
$$

- Residual or error norm need to be replaced by their preconditioned counterparts

$$
\left\|r_{i}^{k}\right\|,\left\|\delta x_{i}^{k}-\Delta x_{i}^{k}\right\| \rightarrow\left\|C_{L} r_{i}^{k}\right\|,\left\|C_{R}^{-1}\left(\delta x_{i}^{k}-\Delta x_{i}^{k}\right)\right\|
$$

Matrix-free Newton methods

- Numerical difference approximation

$$
F^{\prime}(x) v=\frac{F(x+\delta v)-F(x)}{\delta}
$$

Secant methods

- Substitute the tangent by the secant

$$
f^{\prime}\left(x^{k}+\delta x_{k}\right) \rightarrow \frac{f\left(x^{k}+\delta x_{k}\right)-f\left(x^{k}\right)}{\delta x_{k}}=j_{k+1}
$$

- Compute the correction

$$
\delta x_{k+1}=-\frac{f\left(x^{k+1}\right)}{j_{k+1}}, \quad x^{k+1}=x^{k}+\delta x_{k}
$$

- Converges locally superlinearly

Quasi-Newton methods

- Extends the secant idea to system of equations

$$
J \delta x_{\kappa}=F\left(x^{k+1}\right)-F\left(x^{k}\right)
$$

- Previous quasi-Newton step: $J_{k} \delta x_{k}=-F\left(x^{k}\right)$
- Jacobian rank-1 update: $J_{k+1}=J_{k}+\frac{F\left(x^{k+1}\right) z^{T}}{z^{T} \delta x_{k}}$
- Next quasi-Newton step:

$$
J_{k+1} \delta x_{k+1}=-F\left(x^{k+1}\right)
$$

Gauss-Newton methods

- Appropriate for nonlinear least square problems
- Must be statistically well-posed (to be discussed later in Sections 2 and 3)
- Two classes of Gauss-Newton methods:
- Local - good initial guess is required
- Global - otherwise

Quasilinearization

- Infinite dimensional Newton methods for operator equations
- The linearized equations can be solved only approximately
- Similar to inexact Newton methods, where the 'truncation errors' correspond to 'approximation errors'

Inexact Newton multilevel methods

- Infinite dimensional linear Newton systems are approximately solved by linear multilevel methods
- When the approximation errors are controlled within an abstract framework of inexact Newton methods, we speak of adaptive Newton multilevel method

Multilevel Newton methods

- Schemes wherein a finite dimensional Newton multigrid method is applied on each level

Nonlinear multigrid methods

- Not Newton methods
- Rather fix point iteration methods
- Not treated here

Adaptive inner solver for inexact Newton Methods

- Idea: solve iteratively the linear systems for the Newton corrections
- The inexact Newton system is given as:

$$
A y_{i}=b-r_{i}, \quad i=0,1, \ldots, i_{\max }
$$

- Several termination criteria:
- Residual norm $\left\|r_{i}\right\|$ is small enough
- Error norm $\left\|y-y_{i}\right\|$ is small enough
- Energy norm \|A ${ }^{1 / 2}\left(y-y_{i}\right) \|$ of the error is small enough

Residual norm minimization: GMRES

- Initial approximation $y_{0} \approx y$, initial residual $r_{0}=b-A y_{0}$,
- Set: $\beta=\left\|r_{0}\right\|, v_{1}=r_{0} / \beta, V_{1}=v_{1}$, iterate $i=1,2, \ldots, i_{\text {max }}$
- Step1. Ortogonalization:

$$
\hat{v}_{i+1}=A v_{i}-V_{i} h_{i} \text { where } h_{i}=V_{i}^{T} A v_{i}
$$

- Step2. Normalisation:

$$
v_{i+1}=\frac{\hat{v}_{i+1}}{\left\|\hat{v}_{i+1}\right\|_{2}}
$$

Residual norm minimization: GMRES

- Step3. Update:

$$
\begin{aligned}
& V_{i+1}=\left(V_{i} v_{i+1}\right) \\
& H_{i}=\left(\begin{array}{cc}
H_{i-1} & h_{i} \\
0 & \left\|\hat{v}_{i+1}\right\|_{2}
\end{array}\right) \text { for i=1 drop the left block column }
\end{aligned}
$$

- Step4. Least squares problem: $z_{i}=\min \left\|\beta e_{1}-H_{i} z\right\|$
- Step5. Approximate solution: $y_{i}=V_{i} z_{i}+y_{0}$

Characteristics of GMRES

- Storage: up to iteration i requires to store $i+2$ vectors of length n
- Computational amount: each iteration performs one matrix/vector multiplication. Up to iteration $i^{,} i^{2} n$ flops
- Preconditioning: best preconditioning for $C_{L}=$ I

Energy norm minimization: PCG

- For symmetric positive definite matrix A the energy product and energy norm are defined as:

$$
(u, v)=\langle u, A v\rangle \text { and }\|u\|_{A}^{2}=(u, u)
$$

- Idea: for positive definite $B \approx A^{-1}$ is much easier to compute $z=B c$ then $A y=b$.

Error norm minimization: CGNE

- Idea: minimize the norm $\left\|y-y_{i}\right\|$
- Initialize: initial approximation y_{0}, initial residual $r_{0}=b-A y_{0}$
- Set: $p_{0}=0, \beta_{0}=0, \sigma_{0}=\left\|r_{0}\right\|^{2}$

Error norm minimization: CGNE

For $i=1,2, \ldots, i_{\text {max }}$

$$
p_{i}=A^{T} r_{i-1}+\beta_{i-1} p_{i-1}
$$

$$
\alpha_{i}=\sigma_{i-1} /\left\|p_{i}\right\|^{2}
$$

$\gamma_{i-1}^{2}=\alpha_{i} \sigma_{i-1} \quad\left(\right.$ Euclideanerrorcontribution $\left.\left\|y_{i}-y_{i-1}\right\|^{2}\right)$

$$
\begin{array}{ll}
y_{i}=y_{i-1}+\alpha_{i} p_{i}, & r_{i}=r_{i-1}-\alpha_{i} A p_{i} \\
\sigma_{i}=\left\|r_{i}\right\|^{2}, & \beta_{i}=\sigma_{i} / \sigma_{i-1}
\end{array}
$$

Characteristics of CGNE

- Storage: up to iteration i requires only 3 vectors of length n
- Computational amount: up to step i the Euclidean inner products sum up to 5in flops
- Preconditioning: $C_{R}^{-1}\left(y-y_{i}\right)$ is minimized. Therefore, only left preconditioning should be realized.

