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Ordinary Newton method

* For general nonlinear problems:

F'(x*)Ax* = —F(x "), x*' = x* + Ax"

e For system of n nonlinear equations Jacobian matrix
IS required

* First we compute the Newton corrections Ax* and
then improve the iterates x¥to obtain x**7



Simplified Newton method

o Keeps the initial derivative throughout the whole
iteration:
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e Saves computational cost per iteration



Newton-like methods

e |n finite dimension, the Jacobian matrix Is:

— Replaced by some fixed ‘close by’ Jacobian F’(z), z#x?
— Approximate F’(x¥) by M(x¥)

MGE" )ox" =—Fx* ), x' =x"+ox"



Exact Newton methods

 When the equation
F'(x*)Ax* = -F(x ")

can be solved using direct elimination methods, we
speak of exact Newton methods

* Erroneous when scaling issues are ignored



Local versus global Newton methods

Local Newton methods require sufficiently good
Initial guess

Global Newton methods compensate by virtue of
damping or adaptive trust region strategies

Exact global Newton codes:
— NLEQ-RES - residual based
— NLEQ-ERR - error oriented
— NLEQ-OPT — convex optimization



Inexact Newton methods

« Inneriteraton  F'(x* )ox = -F(x" )+ rf
X = x* 4 oxf
i : k+1 k+1
e Quter iteration X =X
e In comparison with exact Newton methods an error
arises: ox* — Ax*

e GIANT — Global Inexact Affine invariant Newton
Techniques



Preconditioning

* Direct elimination of ‘similar’ linear systems
CLF'(x" ) CpCr' (8 x; — Ax} ) = Cprf

* Residual or error norm need to be replaced by their
preconditioned counterparts
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Matrix-free Newton methods

 Numerical difference approximation

F(x+ov)—F(x)

F'(x)v= y




Secant methods

e Substitute the tangent by the secant
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o Compute the correction

. f(xk+1) k+1
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« Converges locally superlinearly
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Quasi-Newton methods

« Extends the secant idea to system of equations
Jox. = F(x"") - F(x")
» Previous quasi-Newton step:  J,dx, = —F(x")
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e Jacobian rank-1 update: Jo,=J, +

e Next quasi-Newton step: Jai0% . =—F(x"™")



Gauss-Newton methods

« Appropriate for nonlinear least square problems

 Must be statistically well-posed (to be discussed
later in Sections 2 and 3)
 Two classes of Gauss-Newton methods:

— Local — good initial guess is required
— Global - otherwise



Quasilinearization

 Infinite dimensional Newton methods for operator
equations

 The linearized equations can be solved only
approximately

e Similar to inexact Newton methods, where the
‘truncation errors’ correspond to ‘approximation
errors’



Inexact Newton multilevel methods

* Infinite dimensional linear Newton systems are
approximately solved by linear multilevel methods

 When the approximation errors are controlled within
an abstract framework of inexact Newton methods,
we speak of adaptive Newton multilevel method



Multilevel Newton methods

e Schemes wherein a finite dimensional Newton
multigrid method is applied on each level



Nonlinear multigrid methods

* Not Newton methods
* Rather fix point iteration methods

 Not treated here



Adaptive inner solver for inexact

Newton Methods
» l|dea: solve iteratively the linear systems for the
Newton corrections

* The inexact Newton system is given as:
Ay, =b-r, i=0Jl,.

e Several termination criteria:
— Residual norm |[|r{| is small enough

— Error norm ||y - y|| is small enough
— Energy norm ||A"2 (y - y)|| of the error is small enough
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Residual norm minimization: GMRES

« Initial approximation y, = y, initial residual r, = b-Ay,,
o Set:B=||rll, v,=ry/B, V,=v, iterate i = 1,2,...,i .,
o Stepl. Ortogonalization:

v, = Av, —V.h, where h, =V Av,
o Step2. Normalisation:
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Residual norm minimization: GMRES

o Step3. Update:
Vi =(Vvi,)
(Hi—l hz‘ \

H,; = L 0 V for i=1 drop the left block column
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- Step4. Least squares problem: z, = min||fe,— H z|
o Step5. Approximate solution: y,=V.z,+y,



Characteristics of GMRES

e Storage: up to iteration / requires to store j+2
vectors of length n

« Computational amount: each iteration performs
one matrix/vector multiplication. Up to iteration i, i°n
flops

* Preconditioning: best preconditioning for C, =1



Energy norm minimization: PCG

e For symmetric positive definite matrix A the energy
product and energy norm are defined as:

(u,v)=<u,Av> and Hu”i =(u,u)

 |dea: for positive definite B = A7 is much easier to
compute z = Bc then Ay = b.



Error norm minimization: CGNE

e |dea: minimize the norm ||y - y||

* Initialize: initial approximation y,, initial residual
ro=b—Ay,

e Set:p,=0,B,=0,0,=]|rl?



Error norm minimization: CGNE
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Characteristics of CGNE

o Storage: up to iteration / requires only 3 vectors of
length n

« Computational amount: up to step i/ the Euclidean
Inner products sum up to din flops

« Preconditioning: C;'(y-y,) is minimized.
Therefore, only left preconditioning should be
realized.



