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O di N t th dOrdinary Newton method
• For general nonlinear problems:

kk1kkkk xxx  ),F(xx)(xF ΔΔ +=−=′ +

• For system of n nonlinear equations Jacobian matrix 
is required

• First we compute the Newton corrections ∆xk and 
then improve the iterates xk to obtain xk+1



Si lifi d N t th dSimplified Newton method
• Keeps the initial derivative throughout the whole 

iteration:
kk1kkk0 Δxxx)F(xΔx)(xF +=−=′ +

• Saves computational cost per iteration
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N t lik th dNewton-like methods
• In finite dimension, the Jacobian matrix is:

– Replaced by some fixed ‘close by’ Jacobian F´(z), z≠x0

– Approximate F´(xk) by M(xk)
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E t N t th dExact Newton methods
• When the equation

)F(xx)(xF kkk −=′ Δ

can be solved using direct elimination methods, we 
speak of exact Newton methods 

• Erroneous when scaling issues are ignored



L l l b l N t th dLocal versus global Newton methods
• Local Newton methods require sufficiently good 

initial guess
• Global Newton methods compensate by virtue of 

damping or adaptive trust region strategies
• Exact global Newton codes:

Q S– NLEQ-RES – residual based
– NLEQ-ERR – error oriented
– NLEQ-OPT – convex optimizationNLEQ-OPT convex optimization



I t N t th dInexact Newton methods
• Inner iteration k
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• Outer iteration
• In comparison with exact Newton methods an error 
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arises: 
• GIANT – Global Inexact Affine invariant Newton 
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Techniques



P diti iPreconditioning
• Direct elimination of ‘similar’ linear systems
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• Residual or error norm need to be replaced by their 
preconditioned counterparts
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M t i f N t th dMatrix-free Newton methods
• Numerical difference approximation
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S t th dSecant methods
• Substitute the tangent by the secant
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• Compute the correction kδx
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• Converges locally superlinearly
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Q i N t th dQuasi-Newton methods
• Extends the secant idea to system of equations

• Previous quasi-Newton step:
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• Jacobian rank-1 update:
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• Next quasi-Newton step:
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G N t th dGauss-Newton methods
• Appropriate for nonlinear least square problems
• Must be statistically well-posed (to be discussed 

later in Sections 2 and 3)
• Two classes of Gauss-Newton methods:

– Local – good initial guess is required
G– Global - otherwise



Q ili i tiQuasilinearization
• Infinite dimensional Newton methods for operator 

equations
• The linearized equations can be solved only 

approximately
• Similar to inexact Newton methods, where the 

‘t ti ’ d t ‘ i ti‘truncation errors’ correspond to ‘approximation 
errors’



I t N t ltil l th dInexact Newton multilevel methods
• Infinite dimensional linear Newton systems are 

approximately solved by linear multilevel methods
• When the approximation errors are controlled within 

an abstract framework of inexact Newton methods, 
we speak of adaptive Newton multilevel method



M ltil l N t th dMultilevel Newton methods
• Schemes wherein a finite dimensional Newton 

multigrid method is applied on each level 



N li lti id th dNonlinear multigrid methods
• Not Newton methods
• Rather fix point iteration methods
• Not treated here



Adaptive inner solver for inexact p
Newton Methods
• Idea: solve iteratively the linear systems for the 

Newton corrections
• The inexact Newton system is given as:

• Several termination criteria:
maxii i,...,1,0i      ,rbAy =−=

– Residual norm ||ri|| is small enough
– Error norm ||y - yi|| is small enough

Energy norm ||A1/2 (y y )|| of the error is small enough– Energy norm ||A1/2 (y - yi)|| of the error is small enough



R id l i i i ti GMRESResidual norm minimization: GMRES
• Initial approximation y0 ≈ y, initial residual r0 = b-Ay0 , 
• Set: β = ||r0||, v1 = r0 / β, V1 = v1, iterate i = 1,2,...,imax

• Step1. Ortogonalization:

• Step2. Normalisation: 
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R id l i i i ti GMRESResidual norm minimization: GMRES
• Step3. Update:
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• Step4. Least squares problem: 
• Step5. Approximate solution:

zHβe minz i1i −=
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Ch t i ti f GMRESCharacteristics of GMRES
• Storage: up to iteration i requires to store i+2

vectors of length n
• Computational amount: each iteration performs 

2one matrix/vector multiplication. Up to iteration i, i2n
flops
P diti i b t diti i f C I• Preconditioning: best preconditioning for CL = I



E i i i ti PCGEnergy norm minimization: PCG
• For symmetric positive definite matrix A the energy 

product and energy norm are defined as: 
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• Idea: for positive definite B ≈ A-1 is much easier to 
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compute z = Bc then Ay = b.



E i i i ti CGNEError norm minimization: CGNE
• Idea: minimize the norm ||y - yi|| 
• Initialize: initial approximation y0, initial residual       

r0 = b – Ay0

• Set: p0 = 0, β0 = 0, σ0 = ||r0||2



E i i i ti CGNEError norm minimization: CGNE
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Ch t i ti f CGNECharacteristics of CGNE
• Storage: up to iteration i requires only 3 vectors of 

length n
• Computational amount: up to step i the Euclidean 

inner products sum up to 5in flops 
• Preconditioning: is minimized. 
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Therefore, only left preconditioning should be 
realized.


