Fachbereich Mathematik

Prof. Dr. M. Hieber Robert Haller-Dintelmann Horst Heck

SS 2008 2.4.2008

Analysis II für M, LaG/M, Ph

1. Tutorium

(T 1)

Berechnen Sie die folgenden Integrale.

(a)
$$\int_0^{\pi} (x^n + \cos x) dx$$
, für $n \in \mathbb{N}$.

(b)
$$\int_0^1 \frac{6x^2 + 4}{x^3 + 2x + 1} dx$$
.

(c)
$$\int_{1}^{e} \frac{\log x}{x} dx.$$

(d)
$$\int_0^1 e^{2x} dx$$
.

(e)
$$\int_0^{\pi} e^{\sin x} \cos x \, dx.$$

(T 2)

Es seien $a < b \in \mathbb{R}$ und $f:[a,b] \to \mathbb{R}$ eine monoton wachsende Funktion. Zeigen Sie, dass

$$f(a) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le f(b)$$

gilt.

(T 3)

Es sei $f:[0,\infty)\to [0,\infty)$ eine monoton fallende Funktion mit $f(x)\stackrel{x\to\infty}{\longrightarrow} 0$. Zeigen Sie, dass $g:[0,\infty)\to\mathbb{R}$ mit $g(x)=\sin(x)f(x)$ uneigentlich integrierbar auf $[0,\infty)$ ist, d.h. dass $\int_0^\infty \sin(x)f(x)\,dx$ existiert.