Fachbereich Mathematik Prof. Dr. W. Stannat Dr. M. Geißert C. Brandenburg R. Hartmann

SS 2008 26.05.2008

8. Übungsblatt zur Mathematik II für MB, WI/MB, MPE, AngMech

Gruppenübung

Aufgabe G1

Bestimmen Sie alle Extrema von $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 4xy$ auf der Menge

$$M := \{ [x, y]^T \in \mathbb{R}^2 : 3x^2 + y^2 - 4 \le 0 \}.$$

Aufgabe G2

Sei $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x,y,z) = \begin{pmatrix} z^2 + xy - 2 \\ z^2 + x^2 - y^2 - 1 \end{pmatrix}$. Zeigen Sie, dass f(x,y,z) = 0 in $[1,1,1]^T$ lokal nach $[x,y]^T$ auflösbar ist. Berechnen Sie die Ableitung der durch f(x,y,z) = 0 implizit definierten Funktion γ mit $[x,y]^T = \gamma(z)$.

Aufgabe G3

Finde den kleinsten und den größten Wert der Funktion f auf der Menge A.

$$f(x,y) = \sin x \sin y \sin(x+y), \quad A = [0,\pi] \times [0,\pi].$$

Hinweis: $\cos \alpha \sin \beta + \sin \alpha \cos \beta = \sin(\alpha + \beta)$

Hausübung

Aufgabe H1

Gegeben seien die Funktionen

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \exp(2x - y),$$
 $g: \mathbb{R}^2 \to \mathbb{R}, \quad g(x,y) = \left(\frac{x}{2}\right)^2 + y^2 - 4.$

Bestimmen Sie alle Extrema von f auf der Menge

$$M := \{(x, y) \in \mathbb{R}^2 : g(x, y) \le 0\}.$$

Aufgabe H2

Gegeben sei die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$, $g(x,y) = \sin y + x^2 e^{-y} - e^{-\pi}$. Kann man für $[x_0,y_0]^T = [1,\pi]^T$ die Gleichung g(x,y) = 0 lokal nach y auflösen? Berechnen Sie in diesem Fall die Ableitung der durch durch g(x,y) = 0 implizit definierte Funktion f mit y = f(x) und geben Sie f'(1) an.

Aufgabe H3

Finde den kleinsten und den größten Wert der Funktion f auf der Menge A.

$$f(x,y) = x + y - 2\sin x \sin y$$
, $A = \{(x,y) \in \mathbb{R}^2 \mid x,y \ge 0, x + y \le \pi\}$.