Fachbereich Mathematik

M. Geißert

R. Haller-Dintelmann

H. Heck

PDG I 11. Übung

Gruppenübungen

(G1)

Es sei $\Omega \subseteq \mathbb{R}^d$ offen. Wir definieren den Dirichlet-Laplace-Operator in $L^2(\Omega)$ durch

$$D(\Delta_{\Omega}^{D}):=\{u\in H_{0}^{1}(\Omega)\mid \Delta f\in L^{2}(\Omega) \text{ im schwachen Sinne}\}, \qquad \Delta_{\Omega}^{D}f=\Delta f.$$

Zeigen Sie, dass Δ_{Ω}^D Erzeuger einer C_0 -Halbgruppe von Kontraktionen auf $L^2(\Omega)$ ist.

(G 2)

Folgern Sie Korollar 7.4.8 der Vorlesung aus Theorem 7.4.7. Gehen Sie dazu in folgenden Schritten vor.

- (a) $i\mathbb{R} \subseteq \varrho(A)$ und $||R(is, A)||_{\mathcal{L}(X)} \leq M/|s|$, wobei $M = \sup_{\mathrm{Re}(\lambda) > 0} ||\lambda R(\lambda, A)||_{\mathcal{L}(X)}$ ist.
- (b) Sei $\mu = r + is \in \Sigma_{\pi/2 + \varepsilon} \setminus \overline{\Sigma_{\pi/2}}$ mit $\varepsilon = \arctan((2M)^{-1})$. Dann gilt $||rR(is, A)||_{\mathcal{L}(X)} \le 1/2$.
- (c) $\Sigma_{\pi/2+\varepsilon} \subseteq \varrho(A)$ und $\|\mu R(\mu, A)\|_{\mathcal{L}(X)} \le 2M + 1$ für alle $\mu \in \Sigma_{\pi/2+\varepsilon}$.