

SS 2008 18.04.2007

2. Übungsblatt zur PDG I

Gruppenübung

Aufgabe G1

Zeigen Sie die folgenden Aussagen:

- (a) Falls $f \in C^m(\Omega)$, so stimmen die "klassischen Ableitungen" und die distributionellen Ableitungen für $|\alpha| \leq m$ überein.
- (b) Seien $g_1, g_2 \in L^1_{loc}(\Omega)$ distributionelle Ableitungen von $f \in L^1_{loc}(\Omega)$. Dann gilt $g_1 = g_2$ fast überall.

Lösung:

- (a) Folgt mittels partieller Integration.
- (b) Sei $f \in L^1_{loc}(\Omega)$ und $g_1, g_2 \in L^1_{loc}\Omega$ mit $f' = g_1$ und $f' = g_2$. Nach Definition der distributionellen Ableitung gilt:

$$\int_{\Omega} (g_1 - g_2)\varphi = 0, \quad \forall \varphi \in C_c^{\infty}(\Omega).$$

Sei (ρ_n) ein Molliefier und g_1^0, g_2^0 die Erweiterung von g_1, g_2 mit 0 auf \mathbb{R}^n . Dann ist $(\rho_n * (g_1^0 - g_2^0))(x) = 0$ für $x \in \Omega$ mit dist $(x, \Omega^c) > \frac{1}{n}$. Da (Wieso? Beweis?)

$$\lim_{n \to \infty} \|\rho_n * (g_1 - g_2) - (g_1 - g_2)\|_{L^1(K)} = 0, \quad \forall K \subset \Omega \text{ kompakt},$$

folgt $||g_1 - g_2||_{L^1(K)} = 0$ für alle $K \subset \Omega$ kompakt, d.h. $g_1 = g_2$ fast überall.

Aufgabe G2

Es sei $d \geq 2$ und $\Omega := B(0, 1/e) := \{x \in \mathbb{R}^d : |x| < 1/e\}$. Zeigen Sie, dass es eine Funktion aus $W^{1,2}(\Omega)$ gibt, die auf Ω nicht-stetig ist. Betrachte dazu Funktionen der Form

$$f(x) := (\log(1/|x|))^s, \quad s \in (0, \infty).$$

2. Übung PDG I

Was bedeutet das für Aussagen über $W^{1,2}$ -Funktionen am Rand ihres Definitionsbereiches?

Lösung: Für jedes s > 0 hat die Funktion eine Singularität in 0, ist also nicht stetig auf Ω . Wir zeigen, dass ein s > 0 existiert mit $f \in W^{1,2}(\Omega)$. Unabhängig von s > 0 ist $f \in L^2(\Omega)$, denn

$$\int_{\Omega} \left| \log 1/|x| \right|^{2s} dx = \int_{\Omega} \left(-|x|^{\varepsilon} \log |x| \right)^{2s} \cdot \frac{1}{|x|^{2\varepsilon s}} dx \le C_{\varepsilon} \int_{\Omega} \frac{1}{|x|^{2\varepsilon s}} dx < +\infty,$$

falls $\varepsilon > 0$ klein genug gewählt ist. Weiter gilt für jedes $j = 1, \dots, d$

$$(D_j f)(x) = s (\log 1/|x|)^{s-1} \cdot |x| \cdot \frac{-1}{|x|^2} \cdot \frac{2x_j}{2|x|}.$$

Also

$$\int_{\Omega} |(D_j f)(x)|^2 dx = s^2 \int_{\Omega} \left| \left(\log 1/|x| \right)^{s-1} \frac{x_j}{|x|^2} \right|^2 dx \le C_s \int_0^{\frac{1}{e}} |\log(r)|^{2s-2} r^{d-3} dr$$

$$\stackrel{r=e^t}{=} C_s \int_{-\infty}^{-1} t^{2s-2} e^{t(d-2)} dt < \infty, \quad s < \frac{1}{2}.$$

Wir zeigen nun, dass f schwach differenzierbar ist. Da $f, \partial_j f \in L^2(\Omega)$ sind, gilt

$$\lim_{\varepsilon \to 0} \int_{\Omega \backslash B(0,\varepsilon)} \partial_j f \varphi = \int_{\Omega \backslash B(0,\varepsilon)} \partial_j f \varphi, \quad s \in (0, \frac{1}{2}), \ \varphi \in C_c^{\infty}(\Omega),$$

$$\lim_{\varepsilon \to 0} \int_{\Omega \backslash B(0,\varepsilon)} f \varphi = \int_{\Omega \backslash B(0,\varepsilon)} f \varphi, \quad s > 0, \ \varphi \in C_c^{\infty}(\Omega).$$

Außerdem gilt

$$\left| \int_{\partial B(0,\varepsilon)} \nu_j f \varphi \right| \le (\log(1/\varepsilon))^s \|\varphi\|_{L^{\infty}(\Omega)} \varepsilon^d \le C_{\varphi} \varepsilon, \quad \varepsilon > 0, \ s \in (0, \frac{1}{2}), \ \varphi \in C_c^{\infty}(\Omega),$$

wobei ν die äußere Normale von Ω bezeichnet. Damit folgt:

$$\int_{\Omega} f \partial_{j} \varphi = \lim_{\varepsilon \to 0} \int_{\Omega \setminus B(0,\varepsilon)} f \partial_{j} \varphi = -\lim_{\varepsilon \to 0} \int_{\Omega \setminus B(0,\varepsilon)} \partial_{j} f \varphi + \int_{\partial B(0,\varepsilon)} \nu_{j} f \varphi$$

$$= \int_{\Omega} \partial_{j} f \varphi, \quad s \in (0, \frac{1}{2}), \ \varphi \in C_{c}^{\infty}(\Omega).$$

Also ist $f \in W^{1,2}(\Omega)$ für $s \in (0, \frac{1}{2})$ aber nicht stetig.

2. Übung PDG I

Aufgabe G3

Sei $\Omega \subset \mathbb{R}^n$ offen. Zeigen Sie:

(a)
$$D_i f^+ = 1_{f>0} D_i f$$
, $D_i f^- = -1_{f<0} D_i f$ fuer $f \in W^{1,2}(\Omega)$

- (b) $f \mapsto |f|, f^+, f^- : W^{1,2}(\Omega) \to W^{1,2}(\Omega)$ stetig.
- (c) $C_c^{\infty}(\Omega)_+$ dicht in $W_0^{1,2}(\Omega)_+$.
- (d) Sei $u \in W^{1,2}(\Omega)$, $supp(u) \subset\subset \Omega$. Dann ist $u \in W_0^{1,2}(\Omega)$.

Hinweis: In einem Hilbertraum H gilt: Sei $x, x_k \in H$ mit $x_k \rightharpoonup x$ und $\overline{\lim_{k \to \infty}} ||x_k|| \le ||x||$. Dann gilt $x_k \to x$.

Lösung:

(a) Sei $(f_n) \subset C^{\infty}(\Omega) \cap W^{1,2}(\Omega)$ mit $f_n \to f$ in $W^{1,2}(\Omega)$ und $|\alpha| \le 1$. O.b.d.A gelte $f_n \to f$ fast überall.

1. Schritt
$$\lim_{n\to\infty} \|f_n \chi_{f_n>0} - f \chi_{f>0}\|_{L^2(\Omega)} = 0$$

Es gilt

$$f_n \chi_{f_n > 0} - f \chi_{f > 0} = (f_n \chi_{f_n > 0} - f \chi_{f_n > 0}) + (f \chi_{f_n > 0} - f \chi_{f > 0}) =: I_n^1 + I_n^2$$

Dann gilt $\lim_{n\to\infty} \|I_n^1\|_{L^2(\Omega)} = 0$ nach Voraussetzung und $\lim_{n\to\infty} \|I_n^2\|_{L^2(\Omega)} = 0$ nach dem Satz von Lebesgue und $\chi_{f_n>0} \to \chi_{f>0}$ fast überall. Analog zeigt man:

2. Schritt
$$\lim_{n\to\infty} \|(D^{\alpha}f_n)\chi_{f_n>0} - (D^{\alpha}f)\chi_{f>0}\|_{L^2(\Omega)} = 0$$

3. Schritt

Es gilt

$$\int_{\Omega} f \chi_{f>0} D^{\alpha} \varphi = \lim_{n \to \infty} \int_{\Omega} f_n \chi_{f_n>0} D^{\alpha} \varphi = \lim_{n \to \infty} \int_{f_n>0} f_n D^{\alpha} \varphi$$

$$= \lim_{n \to \infty} \left(-\int_{f_n>0} D^{\alpha} f_n \varphi + \int_{f_n=0} f_n \varphi \right)$$

$$= \lim_{n \to \infty} -\int_{f_n>0} D^{\alpha} f_n \varphi = -\int_{\Omega} D^{\alpha} f \chi_{f>0} \varphi$$

Die zweite Gleichung zeigt man analog.

(b) Sei $(u_k) \subset W^{1,2}(\Omega)$ mit $u_k \to u$ in $W^{1,2}(\Omega)$.

Beh.: $|u_k| \to |u|$ in $W^{1,2}(\Omega)$

Wir zeigen $|u_{k_l}| \to |u|$ für eine Teilfolge von (u_k) . Da $W^{1,2}(\Omega)$ reflexiv ist, existiert eine Teilfolge $(u_{k_l}) \subset (u_k)$ mit $u_{k_l} \to v$ in $W^{1,2}(\Omega)$. Wegen $|u_k| \to |u|$ in $L^2(\Omega)$, folgt v = |u|. Außerdem gilt:

$$\overline{\lim_{k \to \infty}} \||u_{k_l}||_{W^{1,2}(\Omega)} = \overline{\lim_{k \to \infty}} \|u_{k_l}\|_{W^{1,2}(\Omega)} = \|u\|_{W^{1,2}(\Omega)} = \||u||_{W^{1,2}(\Omega)}.$$

2. Übung PDG I

Die Behauptung folgt nun mit dem Hinweis. Wegen $u^+ = \frac{1}{2}(u + |u|)$ und $u^- = (-u)^+$ folgt (b).

(c) Sei $f \in W_0^{1,2}(\Omega)_+$ und sei $(\varphi_n) \subset C_c^{\infty}(\Omega)$ mit $\varphi_n \to f$ in $W^{1,2}(\Omega)$. Mit (b) folgt: $\varphi_n^+ \to f^+ = f$ in $W^{1,2}(\Omega)$. Zu $\varepsilon > 0$ wähle nun ein φ_j mit

$$\|\varphi_j^+ - f\|_{W^{1,2}(\Omega)} \le \varepsilon.$$

Sei (ρ_n) ein Mollifier. Wähle nun ρ_k so, dass supp $\rho_k * \varphi_j^+ \subset \Omega$ und $\|\rho_k * \varphi_j^+ - \varphi_j^+\|_{W^{1,2}(\Omega)} \le \varepsilon$. Dann gilt $\rho_k * \varphi_j \in C_C^{\infty}(\Omega)_+$ und

$$||f - \rho_k * \varphi_j||_{W^{1,2}(\Omega)} \le 2\varepsilon.$$

(d) Die Faltung mit einem Mollifier liefert das Gewünschte. Einziges Problem ist der Träger (vgl. (d))!

Aufgabe G4

Sei $d \geq 2$ und $f_1, \ldots, f_d \in L^{d-1}(\mathbb{R}^{d-1})$. Für $x \in \mathbb{R}^d$ und $1 \leq i \leq d$ setze für $x \in \mathbb{R}^d$ $\widetilde{x}_i := (x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots x_d) \in \mathbb{R}^{d-1}$, und $f(x) = f_1(\widetilde{x}_1) f_2(\widetilde{x}_2) \cdots f_n(\widetilde{x}_d)$. Zeigen Sie, dass $f \in L^1(\mathbb{R}^d)$ und

$$||f||_{L^1(\mathbb{R}^d)} \le \prod_{i=1}^d ||f_i||_{L^{d-1}(\mathbb{R}^{d-1})}$$

gilt.

Lösung: Der Fall d=2 ist trivial. Wir beweisen mit Induktion. Sei $d \geq 3$ und nehme an, dass für alle $2 \leq k < d$ die Behauptung wahr ist. Dann

$$\begin{split} \|f\|_{L^1(\mathbb{R}^d)} &= \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} |f(x)| \; \mathrm{d}x_d \; \mathrm{d}x_1 \dots \; \mathrm{d}x_{d-1} \\ &= \int_{\mathbb{R}^{d-1}} |f_d(\widetilde{x}_d)| \int_{\mathbb{R}} \prod_{i=1}^{d-1} |f_i(\widetilde{x}_i)| \; \mathrm{d}x_d \; \mathrm{d}x_1 \dots \; \mathrm{d}x_{d-1} \\ &\overset{\text{veralg. H\"older}}{\leq} \int_{\mathbb{R}^{n-1}} |f_d(\widetilde{x}_d)| \Big(\prod_{i=1}^{d-1} \int_{\mathbb{R}} |f_i(\widetilde{x}_i)|^{d-1} \; \mathrm{d}x_d \Big)^{\frac{1}{d-1}} \; \mathrm{d}x_1 \dots \; \mathrm{d}x_{d-1} \\ &\overset{\text{H\"older}}{\leq} \|f_d\|_{L^{d-1}(\mathbb{R}^{d-1})} \Big(\int_{\mathbb{R}^{d-1}} \prod_{i=1}^{d-1} \Big(\int_{\mathbb{R}} |f_i(\widetilde{x}_i)|^{d-1} \; \mathrm{d}x_d \Big)^{\frac{1}{d-2}} \; \mathrm{d}x_1 \dots \; \mathrm{d}x_{d-1} \Big)^{\frac{d-2}{d-1}} \\ &\overset{\text{Ind.}}{\leq} \|f_d\|_{L^{d-1}(\mathbb{R}^{d-1})} \prod_{i=1}^{d-1} \Big(\int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} |f_i(\widetilde{x}_i)|^{d-1} \; \mathrm{d}x_d \; \mathrm{d}\widetilde{x}_i \Big)^{\frac{1}{d-1}} \\ &= \prod_{i=1}^{d-1} \|f_i\|_{L^{d-1}(\mathbb{R}^{d-1})}. \end{split}$$