Fachbereich Mathematik PD Dr. P. Neff Jennifer Prasiswa

SS 2008 29.05.2008

4. Übung zur "Mathematik II fr Chemiker"

Gruppenübung

Aufgabe G13 (Eigenwerte)

Sei A die reelle 2×2 -Matrix $A = \begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix}$.

- (a) Für $\lambda \in \mathbb{R}$ sei $B_{\lambda} = A \lambda E_2$. Berechne Werte λ_1 und $\lambda_2 \in \mathbb{R}$, so daß $\det(B_{\lambda_i}) = 0$.
- (b) Finde Vektoren v_1 und v_2 , die $V_1 := \ker B_{\lambda_1}$ bzw. $V_2 := \ker B_{\lambda_2}$ erzeugen. Zeige, daß V die direkte Summe von V_1 und V_2 ist.
- (c) Warum bilden die Vektoren v_1, v_2 eine Basis \mathcal{B}' ?
- (d) Die Matrix A beschreibt eine lineare Abbildung bezüglich der Standardbasis. Berechne die Matrix dieser Abbildung bezüglich der neuen Basis \mathcal{B}' .

Lösung:

(a) Es ist

$$\det B = \det \begin{pmatrix} -2 - \lambda & 6 \\ -2 & 5 - \lambda \end{pmatrix} = (-2 - \lambda)(5 - \lambda) + 12 = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2),$$

also $\lambda_1 = 1$ und $\lambda_2 = 2$.

(b) Um die Kerne zu bestimmen, erhält man mit Gauss-Jordan-Elimination

$$B_1 = \begin{pmatrix} -3 & 6 \\ -2 & 4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -3 & 6 \\ 0 & 0 \end{pmatrix}$$
 and $B_2 = \begin{pmatrix} -4 & 6 \\ -2 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -4 & 6 \\ 0 & 0 \end{pmatrix}$.

Daher kann man $v_1 = \binom{2}{1}$ und $v_2 = \binom{3}{2}$ wählen. v_1 und v_2 sind linear unabhängig, daher ist $V_1 \cap V_2 = \{0\}$ und $V_1 + V_2 = V$. Also ist V die direkte Summe von V_1 und V_2 .

- (c) Die Vektoren v_1 und v_2 sind linear unabhängig und bilden daher eine Basis.
- (d) Die Übergangsmatrix von der Standardbasis zur Basis B' ist

$$S := \left(\begin{array}{cc} 2 & 3 \\ 1 & 2 \end{array}\right).$$

Mit Hilfe von

$$S^{-1} = \left(\begin{array}{cc} 2 & -3 \\ -1 & 2 \end{array}\right)$$

berechnet man die gesuchte Matrix A' als

$$A' = S^{-1}AS = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right).$$

Aufgabe G14 (Quadratische Form, Diagonalisierbarkeit)

Mit einer symmetrischen Matrix $A \in \mathbb{R}^{3\times 3}$ ist die quadratische Form $Q_A : \mathbb{R}^3 \to \mathbb{R}$ mit der Zuordnungsvorschrift

$$Q_A(x) = 7x_1^2 + 6x_2^2 + 5x_3^2 - 4x_1x_2 - 4x_2x_3$$

assoziiert.

- (a) Geben Sie die Matrix A an und entscheiden Sie, ob A positiv oder negativ definit ist.
- (b) Begründen Sie, warum die Matrix A diagonalähnlich ist und geben Sie eine geeignete invertierbare Transformationsmatrix $S \in \mathbb{R}^{3\times 3}$ mit $S^{-1} \cdot A \cdot S = D$ an, wobei $D \in \mathbb{R}^{3\times 3}$ eine Diagonalmatrix bildet.

Lösung:

(a) Die zur quadratischen Form Q_A gehörige Matrix lautet

$$A = \begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix}.$$

Um zu zeigen, daß A positiv definit ist, genügt es nach Satz 11.21 im Skript nachzuweisen, daß die Hauptunterdeterminanten

$$D_i = \det \begin{pmatrix} a_{11} & \cdots & a_{1i} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} \end{pmatrix}$$

für i = 1, 2, 3 positiv sind. Wir erhalten

$$D_{1} = \det(7) = 7 > 0$$

$$D_{2} = \begin{vmatrix} 7 & -2 \\ -2 & 6 \end{vmatrix} = 38 > 0$$

$$D_{3} = \begin{vmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{vmatrix} = 162 > 0$$

und somit ist A positiv definit. Alternativ hätten wir (ebenfalls nach Satz 11.21) zeigen können, daß sämtliche Eigenwerte von A positiv sind. Das charakteristische Polynom von A besitzt die Darstellung

$$P_{A}(\lambda) = (-1)^{3} \cdot \det(A - \lambda I)$$

$$= (-1) \cdot \begin{vmatrix} 7 - \lambda & -2 & 0 \\ -2 & 6 - \lambda & -2 \\ 0 & -2 & 5 - \lambda \end{vmatrix}$$

$$= (-1) \cdot [(7 - \lambda) \cdot (6 - \lambda) \cdot (5 - \lambda) - 4 \cdot (7 - \lambda) - 4 \cdot (5 - \lambda)]$$

$$= \lambda^{3} - 18\lambda^{2} + 99\lambda - 162$$

$$= (\lambda - 3) \cdot (\lambda - 6) \cdot (\lambda - 9)$$

und somit erhalten wir die Eigenwerte

$$\lambda_1 = 3$$
, $\lambda_2 = 6$ und $\lambda_3 = 9$,

welche alle positiv sind.

(b) Da es sich bei A um eine symmetrische Matrix handelt, folgt mit Folgerung 11.20 die $Diago-nal\ddot{a}hnlichkeit$ von A. Dieser Satz besagt außerdem, daß es eine invertierbare Matrix $S \in \mathbb{R}^{3\times 3}$ und ein Diagonalmatrix $D \in \mathbb{R}^{3\times 3}$ mit

$$S^{-1} \cdot A \cdot S = D$$

gibt. Dabei sind die Diagonalelemente von D die Eigenwerte von A und die Spalten von S setzen sich aus den zugehörigen Eigenvektoren zusammen. Da wir die Eigenwerte

$$\lambda_1 = 3$$
, $\lambda_2 = 6$ und $\lambda_3 = 9$,

im vorigen Aufgabenteil bereits bestimmt haben, ist nun noch für i=1,2,3 zu jedem Eigenwert λ_i ein Eigenvektor x_i zu ermitteln, wobei darauf hingewiesen sei, daß jeder Eigenwert eine einfache Nullstelle des charakteristischen Polynoms $P_A(\lambda_i)$ bildet und somit nach Bemerkung (7) auf S.66 a.a.O. der Kern von $A-\lambda_i I$ eindimensional ist. Wir unterscheiden nun die folgenden Fälle:

 $\lambda_1 = 3$: Hier ist eine Lösung des Gleichungssystems

$$(A-3I) \cdot x_1 = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} x_{1,1} \\ x_{1,2} \\ x_{1,3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

zu bestimmen, wozu das Gauß-Jordan-Verfahren verwendet werden soll:

	4	-2	0	0
	-2	3	-2	0
	0	-2	2	0
	4	-2	0	0
$Z2 + (\frac{1}{2}) \cdot Z1$	0	2	-2	0
(2)	0	-2	2	0
Z1+Z2	4	0	-2	0
	0	2	-2	0
Z3+Z2	0	0	0	0
$Z1 \cdot \left(\frac{1}{4}\right)$	1	0	$-\frac{1}{2}$	0
$Z1 \cdot \left(\frac{1}{4}\right)$ $Z2 \cdot \left(\frac{1}{2}\right)$	0	1	-1	0
	0	0	0	0

Somit ist $x_{1,3}$ frei wählbar und wir erhalten

$$x_{1,2} = x_{1,3}$$
 und $x_{1,1} = \frac{1}{2}x_{1,3}$.

Wählt man beispielsweise

$$x_{1,3} = 2,$$

so bildet

$$x_1 = \begin{pmatrix} x_{1,1} \\ x_{1,2} \\ x_{1,3} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

eine Lösung von $(A-3I)\cdot x_1=0$ und ist somit ein Eigenvektor zum Eigenwert $\lambda_1=3$.

$$(A-6I) \cdot x_2 = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_{2,1} \\ x_{2,2} \\ x_{2,3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Mit dem Gauß-Jordan-Verfahren folgt

	1	-2	0	0
	-2	0	-2	0
	0	-2	-1	0
	1	-2	0	0
$Z2+2\cdot Z1$	0	-4	-2	0
	0	-2	-1	0
$Z1 + (-\frac{1}{2})Z2$	1	0	1	0
	0	-4	-2	0
$Z3 + (-\frac{1}{2})Z2$	0	0	0	0
	1	0	1	0
$Z2 \cdot \left(-\frac{1}{4}\right)$	0	1	$\frac{1}{2}$	0
	0	0	0	0

Hier ist $x_{2,3}$ frei wählbar und es folgt

$$x_{2,2} = -\frac{1}{2}x_{2,3}$$
 und $x_{2,1} = -x_{2,3}$.

Wird nun beispielsweise

$$x_{2,3} = 2$$

gewählt, dann ist

$$x_2 = \begin{pmatrix} x_{2,1} \\ x_{2,2} \\ x_{2,3} \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$$

eine Lösung von $(A-6I)\cdot x_2=0$ und ist damit zugleich ein Eigenvektor zum Eigenwert $\lambda_2=6.$

 $\lambda_3=9$: In diesem Fall ist eineLösung des Gleichungssystems

$$(A - 9I) \cdot x_3 = \begin{pmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{pmatrix} \cdot \begin{pmatrix} x_{3,1} \\ x_{3,2} \\ x_{3,3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

zu ermitteln. Mit dem Gauß-Jordan-Verfahren folgt

oordan verramen roige						
	-2	-2	0	0		
	-2	-3	-2	0		
	0	-2	-4	0		
	-2	-2	0	0		
Z2-Z1	0	-1	-2	0		
	0	-2	-4	0		
$Z1+(-2)\cdot Z2$	-2	0	4	0		
	0	-1	-2	0		
$Z3+(-2)\cdot Z2$	0	0	0	0		
$Z1 \cdot \left(-\frac{1}{2}\right)$	1	0	-2	0		
$Z2 \cdot (-1)$	0	1	2	0		
	0	0	0	0		

Damit ist $x_{3,3}$ frei wählbar und es gilt

$$x_{3,2} = -2x_{3,3}$$
 und $x_{3,1} = 2x_{3,3}$.

Setzen wir beispielsweise

$$x_{3,3} = 1$$
,

dann erhalten wir mit

$$x_3 = \begin{pmatrix} x_{3,1} \\ x_{3,2} \\ x_{3,3} \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

eine Lösung von $(A-9I)\cdot x_3=0$, die zugleich auch einen Eigenvektor zum Eigenwert $\lambda_3=9$ darstellt.

Setzen wir nun

$$S := \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix} \quad \text{und} \quad D := \begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{pmatrix},$$

dann erhalten wir mit

$$S^{-1} := \begin{pmatrix} -\frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ -\frac{2}{9} & -\frac{1}{9} & \frac{2}{9} \\ \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1 & 2 & 2 \\ -2 & -1 & 2 \\ 2 & -2 & 1 \end{pmatrix}$$

schließlich die gewünschte Darstellung der Form

$$S^{-1} \cdot A \cdot S = D.$$

Aufgabe G15 (Basiswechsel)

Die lineare Funktion $f: \mathbb{R}^3 \to \mathbb{R}^3$ sei durch die Darstellungsmatrix

$$_{E}M_{E}(f) = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

(bezüglich der Standardbasis $E = (e_1, e_2, e_3)$) gegeben.

Bestimme die Darstellungsmatrix $_BM_B(f)$ von f bezüglich der Basis

$$B = \left(\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right).$$

Lösung: (Siehe 11.2 Beispiel 3) Sei

$$S = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}.$$

Dann ist S die Darstellungsmatrix der linearen Abbildung, die Koordinatenvektoren bezüglich der Basis B auf Koordinatenvektoren bezüglich der Standardbasis E abbildet. Dann folgt für die Darstellungsmatrix ${}_BM_B(f)$ von f bezüglich der Basis B

$$_BM_B(f) = S^{-1}{}_EM_E(f)S.$$

Es ist zunächst die Inverse von S zu berechnen:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \overset{II+I}{\leadsto} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 2 & 2 & 1 & 0 & 1 \end{pmatrix} \overset{II-II}{\leadsto} \begin{pmatrix} 1 & 0 & -1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & -2 & -1 & -2 & 1 \end{pmatrix} \overset{II-II}{\leadsto} \begin{pmatrix} 1 & 0 & -1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & -2 & -1 & -2 & 1 \end{pmatrix} \overset{II-II}{\leadsto} \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & -1 & -2 & 1 \end{pmatrix} \overset{II-II}{\leadsto} \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & \frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}.$$

Folglich gilt

$$S^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & -1 & 1 \\ \frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}.$$

Daraus folgt

$${}_{B}M_{B}(f) = S^{-1}{}_{E}M_{E}(f)S = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & -1 & 1 \\ \frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & -1 & 1 \\ \frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 3 \\ -1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Aufgabe G16 (Positiv und negativ definit bzw. semidefinit)

Gucken Sie sich Definition 11.21 im Skript an. Welche der folgenden Matrizen sind

(i) positiv definit,

- (ii) negativ definit,
- (iii) indefinit,
- (iv) positiv semidefinit,
- (v) negativ semidefinit?

Begründen Sie jeweils und geben Sie im indefiniten Fall Vektoren an, die Ihre Behauptung belegen.

$$A_{1} = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix}, A_{3} = \begin{pmatrix} 4 & 3 \\ 3 & 1 \end{pmatrix}, A_{4} = \begin{pmatrix} -4 & 2 \\ 2 & 1 \end{pmatrix}, A_{5} = \begin{pmatrix} -4 & 1 \\ 1 & 1 \end{pmatrix}$$
$$A_{6} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A_{7} = \begin{pmatrix} -2 & -2 & 0 \\ -2 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A_{8} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Lösung:

- A_1 und A_6 sind positiv semidefinit (Eigenwerte ≥ 0)
- A_2 ist positiv definit (Hauptdeterminanten > 0)
- A₈ ist negativ semidefinit (siehe Diagonaleinträge)
- die restlichen Matrizen sind indefinit, zum Beispiel A_3 : $\langle A_3e_1, e_1 \rangle = 4 > 0$ aber $\langle A_3(e_1 e_2), (e_1 e_2) \rangle = -1 < 0$