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VII. Compact Operator Semigroups

Having investigated the asymptotic behavior of the Cesaro means

n—1
LT
i=0

and having found convergence in many cases, we are now interested in the behavior
of the powers

T, :=

S|

Tn
of T(=T,) themselves. The problems and methods are functional-analytic, and for
a better understanding of the occurring phenomena the theory of compact operator

semigroups — initiated by Glicksberg-de Leeuw [1959] and Jacobs [1956] — seems to
be the appropriate framework.

Therefore, in this lecture we present a brief introduction to this field, restricting
ourselves to cases which will be applied to measure-theoretical and topological dy-
namical systems.

In the following, a semigroup S is a set with an associative multiplication
(t,s) = t-s.

However such objects become interesting (for us) only if they are endowed with
some additional topological structure.

VII.1 Definition:

A semigroup S is called a semitopological semigroup if S is a topological space such
that the multiplication is separately continuous on S x S. Compact semigroups are
semitopological semigroups which are compact.

Remark: This terminology is consistent with that of App.D, since every com-
pact (semitopological) group has jointly continuous multiplication (see VIIL.D.6)
and therefore is a compact topological group.

For a theory applicable to operators on Banach spaces, it is important to as-
sume that the multiplication is only separately continuous (see B.16). But this
is still enough to yield an interesting structure theorem for compact semigroups.
We present this result in the commutative case and recall first that an ideal in a
commutative semigroup S is a nonempty subset .J such that S.J := {st : s € S} € J.

VII.2 Theorem:
Every commutative compact semigroup S contains a unique minimal ideal K, and
K is a compact group.

Proof. Choose closed ideals Jq,...,J, in S. Since

G # JiJs...J, C Ji,

-

i=1

we conclude that the family of closed ideals in S has the finite intersection property,
and therefore the ideal

K = ﬂ{J : J is a closed ideal}
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is non-empty by the compactness of S. By the separate continuity of the multipli-
cation, the principal ideal Ss = sS generated by s € S is closed. This shows that
K is contained in every ideal of S. Next we show that K is a group: sK = K
for every s € S since K is minimal. Hence there exists ¢ € K such that sq = s.
Moreover for any r € K there exists ' € K such that 7's = r. This implies

rg=r'sg=1r's=r,

i.e. ¢is aunit in K. Again from sK = K we infer the existence of t(= s~!) such that
st = q. Finally, we have to show that the multiplication on a compact semigroup
which is algebraically a group is already jointly continuous. As remarked above,
this is a consequence of a famous theorem of Ellis (see VII.D.6). m

By the above theorem, in every compact commutative semigroup S we have a
unique idempotent ¢, namely the unit of K, such that

K =gqS

is an ideal in S and a compact group with unit q. Now we will apply this abstract
result to semigroups generated by certain operators on Banach spaces. The situ-
ations which occurred in (IV.5) and (IV.6) are the main applications we have in
mind.

VII.3 Lemma:
Let (E;T) be an FDS satisfying

(%) {T" fine N} is relatively weakly compact for every f € F.

Denote by . := {T™ : n € N} the closure of {T" : n € N} in Z(FE) with respect
to the weak operator topology. Then . and its closed convex hull 6(.) are
commutative compact semigroups.

Proof. Multiplication is separately continuous for the weak operator topology (see
App.B.16), hence {T™ : n € N} is a commutative semitopological semigroup in
Z(E). Tt is remarkable that separate continuity is sufficient to prove that its
closure is still a semigroup and even commutative. We show the second assertion
while the proof of the first is left to the reader. From the separate continuity it
follows that operators in . commute with operators in {T" : n € N}. Now take
0#Ri,Rye., feE, f'e E'! and e > 0. Then there exists R € {T" : n € N} such
that

and

I{(R2 = R)f,Rif")| <
I{(R2 — R)R: £, f")| <

NN ™

Therefore we have
[{(R1Ry — RoR1)f, f')| = K(RiRy — RiR + RRy — RoRa)f, ')
S K(Bi(Re = R)f, Ol + K(R—= R2)Ri f, f)| <ce,
which implies R1 Ry = R2R;.
Finally, the condition (*) implies that . is compact in %, (E) (see App.B.14).

Since the closed convex hull of a weakly compact set in E is still weakly compact
(see App.B.6), and since the convex hull co() is a commutative semigroup, the
same arguments as above apply to €o(.). m
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Now we apply (VIL.2) to the semigroups . and ¢6(.’). Thereby the semigroup
¢o() leads to the already known results of Lecture IV.

VII1.4 Proposition:

Let (E;T) be an FDS satisfying (x). Then T is mean ergodic with corresponding
projection P, and {P} is the minimal ideal of the compact semigroup co{7T™" : n €
No}.

In particular, E=F®F;

where F:=PE={feE:Tf=7f}

and Fo:=PH0)=(G(d-T)E={feE:0eco{T"f:neNy}}.

Proof. The mean ergodicity of T' follows from (IV.4.c), and TP = PT = P (see
IV.3.1) shows that {P} is the minimal ideal in @6{7™ : n € Ny}. The remaining
statements have already been proved in (IV.3) except the last identity which follows
from (IV.4.d). L]

Analogous reasoning applied to the semigroup
S ={T":neNy} € Zu(E)

yields another splitting of E into T-invariant subspaces. The main point in the
following theorem is the fact that we are again able to characterize these subspaces.
VII.5 Theorem:
Let (E;T) be an FDS satisfying (x). Then there exists a projection

Qe :={T":neNy}
such that K =QS

is the minimal ideal of .¥ and a compact group with unit Q.

In particular, E=G®G,
where G;=QE=E{feE;Tf=AfforsomeAe@, |>\\=1}
and GFy := Q—1(0)={feE;Oe{Tnf:neNO}"‘E’E)}.

Proof. (VIL.2) and (VIL.3) imply the first part of the theorem, while the splitting
E=G®Go=QE®Q'(0) is obvious since @ is a projection.

The characterizations of Q~!(0) and QF are given in three steps:

1. We show that Q71(0) = {f € E:0e {T"f :ne No} }. Since for every f € E
map S — Sf is continuous from .Z,,(F) into E, and since @ is contained in .,
we see that Qf = 0 implies 0 € {T"f : n € Ng}. Conversely,if 0 € {T"f : n € Ny},
there exists an operator R in the compact semigroup . such that Rf = 0. A
fortiori

QRf=0 and Qf=RQRf=0
where R’ is the inverse of QR in the group % = Q..
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2. Next we prove that
QEC H :=lin{f e E:Tf = \f for some |\| = 1}.

Denote by A the character group of # and define for every character v € Y
the operator P,

Py(f) = L 7®)Sf dm(S), feE.

Here, m is the normalized Haar measure on %, and the integral is understood
in the weak topology on FE, i.e.

(Pf) I = J% TEXSS, 'y dm(S), for every f' € B,

P,(f) is an element of the bi-dual E” contained in co{y(S) - Sf : S € J}.
However by Krein’s theorem (App.B.6) this set is o(E, E’)-compact and hence
contained in F. Therefore P, is a well-defined bounded linear operator on F.
Now take R € .# and observe that

R, (1) = B(| 3G)S7am()) = | FEIRSS dm(s)

A
= v(R)I Y(RS)RS f dm(RS) = v(R)Py(f) for every f €E
H
ie., RP,=P,R=~(R)P,.

For R := TQ we obtain TP, = TQP, = v(TQ)P, and therefore P,(H) <
H. The assertion is proved if we show that QE C lin| J{P,E : v € #} or
equivalently that {P,E : v € '} is total in QFE.

Take f' € E' vanishing on the above set, i.e., such that {  ~v(S){Sf, ') dm(S) =

0 for all v € A and all f € E. Since the mapping S — {(Sf, f'> is continuous,
and since the characters form a complete orthonormal basis in L?(#",m) (see
App.D.7) this implies that < Sf, f' >= 0 for all S € #. In particular, taking
S = @ we conclude that f’ vanishes on QE.

3. Finally, we show that H € QFE. This inclusion is proved if ), the unit of 7 is
the identity operator on H. Every eigenvector of T is also an eigenvector of T"
and hence an eigenvector of R € .. Now take € > 0 and a finite set

F=Af1,---, fn}
of normalized eigenvectors of T' (and R) with
Rfi=Xifi, |Nl=11<i<n.
By the compactness of the torus I' we find m € N such that
|1 — A"| < e and consequently
|R™fi — fi]l <e simultaneously fori=1,...,n.

This proves that the set
Ar.:={Re X :|Rf — f| <efor fe F}
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is non-empty and closed. By the compactness of J# we conclude that ﬂ Ar. #
F,e

. i.e. # contains an element which is the identity operator on H. Since @ is

the unit of . it must be the identity on H.

The minimal ideal J# of . in the above theorem may be identified with a group
of operators on H = lin{f € E : Tf = \f for some |A\| = 1} which is compact
in the weak operator topology and has unit @) = idy. Moreover, the weak and
strong topologies coincide on the one-dimensional orbits . f for every eigenvector f.
Therefore the group J# is even compact for the strong operator topology. Operators
for which H = FE (and therefore Q) = idg and . = .#') are of particular importance
and will be called “operators with discrete spectrum”. The following is an easy
consequence of these considerations.

VII.6 Corollary:

For an FDS (E;T) with |T™| < ¢ the following properties are equivalent:

(a) T has discrete spectrum, i.e. the eigenvectors corresponding to the unimodular
eigenvalues of T are total in E.

(b) . ={T":neNy} S Z,(FE)is a compact group with unit idg.

(¢) & ={T":neNy} S Z(F)is a compact group with unit idg.

The following example is simple, but very instructive and should help to avoid
pitfalls.

VII.7 Example:
Take the Hilbert ¢?(Z) and the shift

T (7)) = (T541)

Then {T™ : n € Z} is a group, its closure in .%,,(¢%(Z)) is a compact semigroup with
minimal ideal .#" = {0}.

VII.8. Programmatic remark:
The semigroups in

S = {Tr :n e No}
in Z,(LP(X,X, 1)), 1 < p < oo, appearing in (measure-theoretical) ergodic theory
are compact and therefore yield projections P (as in VIL.4) and @ (as in VIL5)
such that

d=2Q=2P=21®1,
where the order relation for projections is defined by the inclusion of the range
spaces. While we have seen in (IV.7) that “ergodicity” is characterized by P = 1®1
we will study in the subsequent lectures the following “extreme” cases:

Lecture VIII: d=Q>P=1®1,
Lecture IX: id>Q=P=1®1.
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VII.D Discussion

VII.D.1. Semitopological semigroups:
One might expect that semigroups S — if topologized — should have jointly contin-
uous multiplication, i.e.,

(t,s) > t-s
should be continuous from S x S into S. In fact, there exists a rich theory for such
objects (see Hofmann-Mostert [1966]), but the weaker requirement of separately
continuous multiplication still yields interesting results as (VIL.2) (see Berglund-
Hofmann [1967]) and occurs in non-trivial examples:

The one point compactification S = Zu{oo} of (Z, +) is a semitopological semigroup
if a4+ 00 =oc+a= o for every a € S. But the addition is not jointly continuous
since

0= lim (n+ (—n)) # lim n+ lim (—n) = co.
n—o0 n—a0N n—a0N

Obviously, the minimal ideal is K = {o0}.

VII.D.2. Weak vs. strong operator topology on .Z(E):

In ergodic theory it is the semigroup {T" : n € No} — T € Z(F) and E a Banach
space — which is of interest. In most cases this semigroup is algebraically isomorphic
to the semigroup Ny. But since our interest is in the asymptotic behavior of the
powers T, we need some topology on .Z(FE). If we choose the norm topology or the
strong operator topology, and if |T"| < ¢, then {T™ : n € No} and {T™ : n € Ny} be-
come topological semigroups with jointly continuous multiplication. Unfortunately,
these topologies are too fine to yield convergence in many cases. In contrast, if we
take the weak operator topology, then {T™ : n € Ng} has only separately continu-
ous multiplication, but in many cases (see IV.5, IV.6 and VIL.3) it is compact, and
convergence of T" or some subsequence will be obtained. The following example
illustrates these remarks:

Take E = (?(Z) and T the shift as in (VIL7). Then T™ does not converge with
respect to the strong operator topology (Proof: If T" f converges, its limit must be
a T-fixed vector, hence equal to 0, but |[f| = |T™f].), but for the weak operator
topology we have lim,,_,,, T" = 0. The fact that the multiplication is not jointly
continuous for the weak operator topology may be seen from

0= lim 7" lim T7" # lim (T"-T7") = id.

n—o0 n—o0 n—o0

VII.D.3. Monothetic semigroups:
The semitopological semigroup

. ={T" :ne Ny C Zy(E)

generated by some FDS (E;T) contains an element whose powers are dense in ..
Such an element is called generating, and the semigroup is called monothetic. We
mention the following examples of monothetic semigroups:

(i) The set S := {27" : n € N} and its closure S = {27 : n € N} U {0}, endowed
with topology and multiplication induced by R, are the simplest monothetic
semigroups.

(ii) The unit circle ' is a (compact) monothetic group, and every a € I which is
not a root of unity is generating (see II1.8.iii).
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(iii) The n-torus I'", n € Nis a (compact) monothetic group, and a = (aq,...,a,) €
I'" is generating iff {ai,...,a,} is linearly independent in the Z-module (see
App.D.8).

(iv) S:=Tu {”T‘flem :n € N}, i2 = —1, is compact monothetic semigroup for the
topology induced by C, the canonical multiplication on T,

nt 1ei" Jm 1emi = Lm—i_le("“”)i for n,m e N
n m n+m
n+1 n+1 .
and ey =r. eM:=vy-e" neN yel.
n n

The element 2¢! is generating (compare Hofmann-Mostert [1966], p. 72).

VII.D.4. Compact semigroups generated by operators on LP(X, X, u):
The operators T, : LPX, ¥, u) — LP(X, %, u) appearing in the ergodic theory of
MDS’s (X, X, ;) generate compact semigroups which will be discussed now in
more generality. To that purpose, consider a probability space (X,¥,u) and a
positive operator

T:LNX,3,p) - LNX, %, p)
satisfying 71 < 1 and 71 < 1. By the Riesz convexity theorem (see Schaefer
[1974], V.8.2) T leaves invariant every LP(u), 1 < p < oo, and the restrictions

TIJ ! LP(X, E7 N’) - LP(X7 Enu)
are contractive for 1 < p < c0. The semigroups
yp = {T;} In e No}

in %, (F) are compact for 1 < p < o0: if 1 < p < 00, argue as in (IV.5); if p = 1,
as in (IV.6). Moreover, it follows from the denseness of L™ (u) in LP(u) that all
these semigroups are algebraically isomorphic, and that all these weak operator
topologies coincide (use App.A.2). Therefore the compact semigroups generated
by T in LP(u) for 1 < p < oo will be denoted by .&.

If L'(p) is separable we can find a sequence {x, : n € N} of characteristic functions
which is total in L!(u). The seminorms

Pnm = |<RXnaXm>|a Re g(Ll(/”))

induce a Hausdorff topology on . weaker than the weak operator topology. Since
& is compact, both topologies coincide, and therefore . is a compact metrizable
semigroup.

VII.D.5. Operators with discrete spectrum:
Clearly, the identity on any Banach space has discrete spectrum. More interesting
examples follow:

(i) Consider E = C(I") and T := T, for some rotation
Paiz>a-z.

The functions f, : z +— 2™ are eigenfunctions of T' for every n € 7 and are
total in C(T") by the Stone-Weierstrass theorem. Therefore, T has discrete
spectrum in C(T).

(ii) The operator T, induced on LP(I', B,m), 1 < p < o, has discrete spectrum
since it has the same eigenfunctions as the operator in (i) and since C'(I') is
dense in LP(u) for 1 < p < oo.
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(iii) Analogous assertions are valid for all operators induced by any rotation on a
compact Abelian group (choose the characters as eigenfunctions), and we will
see in Lecture VIII in which sense this situation is typical for ergodic theory.

(iv) There exist operators having discrete spectrum but unbounded powers:

For n > 2 endow E,, := C" with the norm

(@1, .. 20)| == max{(n +1—i) " |z : 1 <i < n}
and consider the rotation operators
Sty En = Ep: (T1,...,20) = (Tn, 21, .., Tp_1).

Every S(,), n > 2, has discrete spectrum in E,. An easy calculation shows
that [|[S,)| < 2 and sup{||S(”i)_1H tio2 2} < ||S("n_)1|\ =n for all n > 2.
Now, take the ('-direct sum E := @, -, E, and T := @, -, S). Clearly
[T =i+ 1 for every i € N, but T has discrete spectrum in E.

VII.D.6. Semitopological vs. topological groups (the Ellis Theorem):

In the remark following Definition (VII.1) we stated that a semitopological group
which is compact is a topological group. Usually this fact is derived from a deep
theorem of Ellis [1957] but the proof of the property we needed in Lecture VII is
actually quite easy — at least for metrizable groups.

Proposition: Let G be a group, ¢ a metrizable, compact Hausdorff topology on
G such that the mapping

(g,h)—gh: GxG -G
is separately continuous. Then (G, &) is a topological group.

Proof. Suppose that the multiplication is not continuous at (s,t) € G x G. Then
there exists € > 0 such that for every neighbourhood U of s and V of ¢

e < d(st, syty)

for some suitable (sy7,ty) € U x V, and d(-,-) a metric on G generating &. Since
multiplication is separately continuous there exists a neighbourhood Uy of s and V4
of t, such that

d(st,s't) < for every s’ € U,

=0 M

and d(sp,t, su,t’) < for every t' € V.

From this we obtain the contradiction

e < d(st, sy, tv, < d(st,su,t) + d(su,t, su,tv,) <

N | ™

Therefore the multiplication is jointly continuous on G.

It remains to prove that the mapping g — ¢! is continuous on G. Take, g € G and

choose a sequence (g )nen contained in G such that lim,_,, g, = g. Since (G, )
is compact and metrizable, the sequence (g, ') has a convergent subsequence in
G. Thus we may assume that lim, ,, g,' = h for some h € G. From the joint
continuity of the multiplication we obtain 1 = gh = hg, thus h = g, which proves
the assertion. [



