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V. The Individual Ergodic Theorem

In L2pX,Σ, µq, convergence in the quadratic mean (i.e. in L2-norm) does not
imply pointwise convergence, and therefore, von Neumann’s ergodic theorem (IV.1)
did not exactly answer the original question: For which observables f and for which
states x does the time mean

lim
nÑ8

1
n

n�1̧

i�0

fpϕipxqq exists?

But very soon afterwards, and stimulated by von Neumann’s result, G.D. Birkhoff
came up with a beautiful and satisfactory answer.

V.1 Theorem (G.D. Birkhoff, 1931):
Let pX,Σ, µ;ϕq be an MDS. For any f P L2pX,Σ, µq and for almost every x P X

lim
nÑ8

1
n

n�1̧

i�0

fpϕipxqq

exists.

Even today the above theorem may not be obtained as easily as its norm-
counterpart (IV.1). In addition, its modern generalizations are not as far reaching
as the mean ergodic theorems contained in Lecture IV. This is due to the fact that
for its formulation we need the concept of µ-a.e.-convergence, which is more strictly
bound to the context of measure theory. For this reason we have to restrict our
efforts to Lp-spaces, but proceed axiomatically as in Lecture IV.

V.2 Definition:
Let pX,Σ, µq be a measure space and consider E � LppX,Σ, µq, 1 ¤ p ¤ 8. P L pEq
is called individually ergodic if for every f P E the Cesáro means Tnf :� 1

n

n�1°
i�0

T if

converge µ-a.e. to some f̄ P E.

Remark: The convergence of Tnf in the above definition has to be understood in
the following sense:
For every choice of functions gn in the equivalence classes }Tnf , n P N, (see B.20)
there exists a µ-null set N such that gnpxq converge for any x P XzN . Only in
(V.D.6) we shall see how a.e.-convergence of sequences in Lppµq can be defined
without referring to the values of representants.

There exist two main results generalizing Birkhoff’s theorem, one for positive
contractions on L1, the other for the reflexive Lp-spaces. But in both cases the
proof is guided by the following ideas: Prove first the a.e.-convergence of the Cesàro
means T on some dense subspace of E (easy!). Then prove some “Maximal Ergodic
Inequality” (difficult!), and – as an easy consequence – extend the a.e.-convergence
to all of E.
Here we treat only the L1-case and refer to App. V for the Lp-theorem.

V.3 Theorem (Hopf, 1954; Dunford-Schwartz, 1956):
Let pX,Σ, µq be a probability space, E � L1pX,Σ, µq and T P L pEq. If T is
positive, T1 ¤ 1 and T 11 ¤ 1, then T is individually ergodic.

Remark: The essential assumptions may also be stated as }T }8 ¤ 1 and }T }1 ¤ 1
for the operator norms on L pL8pµqq and L pL1pµqq. The proof of the above



44

“individual ergodic theorem” will not be easy, but it is presented along the lines
indicated above.

V.4 Lemma:
Under the assumptions of (V.3) there exists a dense subspace E0 of E � L1pX,Σ, µq
such that the sequence of functions Tnf converges with respect to } � }8 for every
f P E0.

Proof. By (IV.6), T is mean ergodic and therefore

L1pµq � F ` pid� T qL1pµq � F ` pid� T qL8pµq,
where F is the T -fixed space in L1pµq. We take E0 :� F ` pid � T qL8pµq. The
convergence is obvious for f P F . But for pid � T qg, g P L8pµq, we obtain, using
(IV.3.0), the positivity of T and T1 ¤ 1, the estimate

|Tnf | � |pid� T qTng| � 1
n
|pid� Tnqg| ¤ 1

n
p|g| � Tn|g|q

¤ 1
n
p}g}8 � 1� }g}8 � Tn1q ¤ 2

n
}g}8 � 1.

V.5 Lemma (maximal ergodic lemma, Hopf, 1954):
Under the assumptions of (V.3) and for f P L1pX,Σ, µq, n P N, γ P R� we define

f�n :� suptTkf : 1 ¤ k ¤ nu and An,γpfq :� rf�n ¡ γs.
Then

γ � µpAn,γpfqq ¤
»
An,γpfq

f dµ ¤ }f}.

Proof (Garsia, 1955):
We keep f, n and γ fixed and define

g :� sup
!k�1̧

i�0

pT if � γq : 1 ¤ k ¤ n
)
.

First we observe that A :� An,γpfq � rg ¡ 0s. Then

T pg�q ¥ pTgq�, since 0 ¤ T

¥ sup
!�k�1̧

i�0

pT i�1f � γT1q
	�

: 1 ¤ k ¤ n
)
, analogously

¥ sup
!�k�1̧

i�0

pT i�1f � γ1q
	�

: 1 ¤ k ¤ n
)
, since T1 ¤ 1

¥ sup
!�k�1̧

i�0

pT i�1f � γ1q
	�

: 1 ¤ k ¤ n� 1
)
,
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� sup
!� ķ

i�0

pT if � γ1q � pf � γ1q
	�

: 2 ¤ k ¤ n
)
,

¥ sup
!k�1̧

i�0

pT if � γ1q � pf � γ1q : 1 ¤ k ¤ n
)
, ¥ g � pf � γ1q.

This inequality yields

1A � pf � γ1q ¥ 1A � g � 1A � T pg�q ¥ g� � T pg�q.
Finally the hypothesis T 11 ¤ 1 implies»
A

pf � γ1q dµ � x1A � pf � γ1q,1y ¥ xg� � T pg�q,1y � xg�,1y � xg�, T 11y ¥ 0.

Remarks:
1. f� :� suptTkf : k P Nu is finite a.e., since µrf� ¡ ms � µrsupnPN f

�
n ¡ ms ¤ }f}

m
for every m P N, and therefore

µ
� £
mPN

rf� ¡ ms
	
� 0 or µrf�   8s � µ

� ¤
mPN

rf� ¤ ms
	
� 1.

2. Observe that we didn’t need the assumption µpXq   8 in (V.5). The essential
condition was that T is defined on L8pµq and L1pµq, and contractive for } � }8
and } � }1.

V.6. Proof of Theorem (V.3):
We take 0 � f P L1pµq and show that

hf pxq :� lim sup
n,mPN

|Tnfpxq � Tmfpxq| � 0

for almost every x P X. With the notation introduced above we have hf pxq ¤
2|f |�pxq and hf pxqhf�f0pxq for every f0 contained in the subspace E0 of } � }8-
convergence found in (V.4). By the maximal ergodic inequality (V.5) we obtain for
γ ¡ 0 the estimate

µrhf ¡ γ}f � f0}s � µrhf�f0 ¡ γ}f � f0}s ¤ µr|f � f0|� ¡ γ
2 }f � f0}s

¤ 2}f � f0}
γ}f � f0} �

2
γ
.

For ε ¡ 0 take γ � 1
ε , choose f0 P E0 such that }f � f0}   ε2, and conclude

µrhf ¡ εs ¤ 2ε.

This shows that hf � 0 a.e..

Remark: The limit function f̄pxq :� limnÑ8 Tnfpxq is equal to Pf where P
denotes the projection corresponding to the mean ergodic operator T . Therefore f̄
is contained in L1pµq.

Since L2pX,Σ, µq � L1pX,Σ, µq for finite measure spaces, the Birkhoff theorem
(V.1) follows immediately from (V.3) for T � Tϕ. Moreover we are able to justify
why “ergodicity” is the adequate “ergodic hypothesis” (compare III.D.6).
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V.7 Corollary:
For an MDS pX,Σ, µ;ϕq the following assertions are equivalent:
(a) ϕ is ergodic.
(b) For all (“observables”) f P L1pX,Σ, µq and for almost every (“state”) x P X

we have

time mean :� lim
nÑ8

1
n

n�1̧

i�0

fpϕipxqq �
»
X

f dµ �: space mean.

Proof. By (IV.7.b) the limit function f̄ is the constant function p1b1qf � p∫
X
f dµq1.

V.D Discussion

V.D.1. “Equicontinuity” for a.e.-convergence:
The reader might have expected, after having proved in (V.4) a.e.-convergence on
a dense subspace to finish the proof of (V.3) by a simple extension argument. For
norm convergence, i.e. for the convergence induced by the norm topology, this is
possible by “equicontinuity” (see B.11). But in the present context, we make the
following observation.

Lemma: In general, the a.e.-convergence of sequences in L1pX,Σ, µq is not a topo-
logical convergence, i.e. there exists no topology on L1pX,Σ, µq whose convergent
sequences are the a.e.-convergent sequences.

Proof. A topological convergence has the “star”-property, i.e. a sequence converges
to an element f if and only if every subsequence contains a subsequence convergent
to f (see Peressini [1967], p. 45). Consider pr0, 1s,B,mq, m the Lebesgue mea-
sure. The sequence of characteristic functions of the intervals r0, 1

2 s, r 12 , 1s, r0, 1
4 s,

r 14 , 1
2 s, r 12 , 3

4 s, r 34 , 1s, r0, 1
8 s, . . . does not converge almost everywhere, while every

subsequence contains an a.e.-convergent subsequence (see A.16)

Consequently, the usual topological equicontinuity arguments are of no use in
proving a.e.-convergence and are replaced by the maximal ergodic lemma (V.5) in
the proof of the individual ergodic theorem. In a more general context this has
already been investigated by Banach [1926] and the following “extension” result is
known as “Banach’s principle” (see Garsia [1970]).

Proposition: Let pSnqnPN ( be a sequence of bounded linear operators on LppX,Σ, µq,
1 ¤ p   8, and consider

S�fpxq :� sup
nPN

|Snfpxq|
G :� tf P Lp : Snf converges µ-a.e.uand

If there exists a positive decreasing function

c : R� Ñ R
such that limγÑ8 cpγq � 0 and

µrS�fpxq ¡ γ}f}s ¤ cpγq
for all f P Lppµq, γ ¡ 0, then the subspace G is closed.
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Proof. Replace }f}
γ in the proof of (V.6) by cpγq

For an abstract treatment of this problem we refer to von Weizsäcker [1974]. See
also (V.D.6).

V.D.2. Mean ergodic vs. individually ergodic:
A bounded linear operator on LppX,Σ, µq may be mean ergodic or individually
ergodic, but in general no implication is valid between the two concepts.

Example 1: The (right) shift operator

T : pxnq ÞÑ p0, x1, x2, . . . q
on `1pNq � L1pN,Σ, µq, where µptnuq � 1 for every n P N, is individually ergodic,
but not mean ergodic (IV.D.3).

Exercise: Transfer the above example to a finite measure space.

Example 2: On L2pr0, 1s,B,mq, m Lebesgue measure, there exist operators which
are not individually ergodic, but contractive hence mean ergodic (see App.V.10).

But a common consequence of the mean and individual ergodic theorem may
be noted: On finite measure spaces pX,Σ, µq the Lp-convergence and the a.e.-
convergence imply the µ-stochastic convergence (see App.A.16).
Therefore

lim
nÑ8µr|Tnfpxq � f̄pxq| ¥ εs � 0

for every ε ¡ 0, f P Lp, where f̄ denotes the limit function of the Cesàro means
Tnf for a mean or individually ergodic operator T P L pLppµqq.

In fact, even more is true.

Theorem (Krengel [1966]): Let pX,Σ, µq be a finite measure space and T be a
positive contraction on L1pµq. Then the Cesàro means Tnf converge stochastically
for every f P L1pµq.

V.D.3. Strong law of large numbers (concrete example)
The strong law of large numbers “is” the individual ergodic theorem. To make this
evident we have to translate it from the language of probability theory into the
language of MDSs. This requires some effort and will be performed in (V.D.7).
Here we content ourselves with an application of the individual ergodic theorem,
i.e. the strong law of large numbers, to a concrete model. As we have seen in (II.3.ii)
the Bernoulli shift Bp 1

2 ,
1
2 q is an adequate model for “coin throwing”. If we take

1A to be the characteristic function of the rectangle

A � tx � pxnq : x0 � 1u
in pX � t0, 1uZ, then

n�1̧

i�0

1Apτ ixq, τ the shift on pX,
counts the appearances of “head” in the first n performances of our “experiment”
x � pxnq. Since Bp 1

2 ,
1
2 q is ergodic and since pµpAq � 1

2 , the individual ergodic
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theorem (V.7) asserts that

lim
nÑ8

1
n

n�1̧

i�0

1Apτ ixq � 1
2

for a.e. x P pX, i.e. the average frequency of “head” in almost every “experiment”
tends to 1

2 .

V.D.4. Borel’s theorem on normal numbers:
A number ξ P r0, 1s is called normal to base 10 if in its decimal expansion

ξ � 0, x1x2x3 . . . , xi P t0, 1, 2, . . . , 9u,
every digit appears asymptotically with frequency 1

10 .

Theorem (Borel, 1909): Almost every number in r0, 1s is normal.

Proof. First we observe that the decimal expansion is well defined except for a
countable subset of r0, 1s. Modulo these points we have a bijection from r0, 1s ontopX :� t0, 1, . . . , 9uN which maps the Lebesgue measure onto the product measure pµ
with pµtpxnq P pX : x1 � 0u � � � � � pµtpxnq P pX : x1 � 9u � 1

10
.

Consider the characteristic function χ of tpxnq P pX : x1 � 1u and the operator
T : L1p pX, pΣ, pµq Ñ L1p pX, pΣ, pµq induced by the (left) shift

τ : pxnq ÞÑ pxn�1q.

Then
n�1°
i�0

T iχpxq �
n�1°
i�0

χpτ ixq is the number of appearances of 1 in the first n digits

of x � pxnq. Since T is individually ergodic with one-dimensional fixed space, we
obtain

lim
nÑ8

1
n

n�1̧

i�0

T iχpxq �
»
X

χ dpµ � 1
10

for almost every x P X. The same is true for every other digit.

V.D.5. Individually ergodic operators on C(X): It seems to be natural to
adapt the question of a.e.-convergence of the Cesàro means Tnf to other function
spaces as well. Clearly, in the topological context and for the Banach space CpXq
the a.e.-convergence has to be replaced by pointwise convergence everywhere. But
for bounded sequences pfnq � CpXq pointwise convergence to a continuous function
is equivalent to weak convergence (see App.B.18), and by (IV.4.b) this “individual”
ergodicity on CpXq would not be different from mean ergodicity.

Proposition: For an operator T P L pCpXqq satisfying }Tn} ¤ c the following
assertions are equivalent:

(a) For every f P CpXq the Cesàro means Tnf converge pointwise to a function
f P CpXq.

(b) T is mean ergodic.
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V.D.6. A.e.-convergence is order convergence:
While the mean ergodic theorem relies on the norm structure of Lppµq (and there-
fore generalizes to Banach spaces) there is strong evidence that the individual er-
godic theorem is closely related to the order structure of Lppµq . One reason – for
others see App.V – becomes apparent in the following lemma.

Lemma: An order bounded sequence pfnq � LppX,Σ, µq, 1 ¤ p ¤ 8, converges
a.e. if and only if it is “order convergent”, i.e.

o� lim
nÑ8 fn :� inf

kPN
sup
n¥k

fn � sup
kPN

inf
n¥k

�: o� lim
nÑ8

fn.

The proof is a simple measure-theoretical argument. It is important that the
“functions” f in the order limit are elements of the order complete Banach lattice
Lppµq. In particular, “null sets” and “null functions” don’t occur any more. Since
the sequences pTnfq in the individual ergodic theorem are unbounded one needs a
slightly more general concept. We decided not to discuss such a concept here since
it seems to us that a purely vector lattice theoretical approach to the individual
ergodic theorem has yet to prove its significance.

References: Ionescu Tulcea [1969], Peressini [1967], Yoshida [1940].

V.D.7. Strong law of large numbers (proof):
As indicated in (V.D.3) this fundamental theorem of probability theory can be
obtained from the individual ergodic theorem by a translation of the probabilistic
language into ergodic theory.

Theorem (Kolmogorov, 1933):
Let pfnqnPN0 be a sequence of independent identically distributed integrable random

variables. Then 1
n

n�1°
i�0

fi converge a.e. to the expected value Ef0 .

Explanation of the terminology: f is a random variable if there is a probability
space pΩ,A ,Pq such that f : Ω Ñ R is measurable (for the Borel algebra B on R).
The probability measure P � f�1 is called the distribution of f , and for A P B one
usually writes

Prf P As :� ppf�1pAqq.
Two random variables fi, fj are identically distributed if they have the same dis-
tribution, i.e. prfi P As � prfj P Bs for every A P B. A sequence pfnq of random
variables is called independent if for any finite set J � N and any sets Aj P B we
have

Prfj P Aj for every j P Js :� P
�£
jPJ

f�1
j pAjq

	
�

¹
jPJ

ppf�1
j pAjqq �

¹
jPJ

Prfj P Ajs.

Finally, f is integrable f P L1pΩ,A ,Pq , and its expected value is

Ef :�
»
Ω

f dPpωq �
»

R
t dpP � f�1qptq.

Proof of the Theorem. Denote by µ the distribution of pfnq, i.e.

µ :� P � f�1
n for every n P N

Consider pX � RZ
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with the product measure pµ on the product σ-algebra pΣ. With the (left) shift τ :pX Ñ pX we obtain an MDS p pX, pΣ, pµ; τq which is a continuous version of the Bernoulli
shift on a finite set (see II.3.iii). As in (III.5.ii) we can verify that p pX, pΣ, pµ; τq is
ergodic, and the individual ergodic theorem implies

1
n

n�1̧

i�0

T iτ
pf a.e.ÝÑ

»
xX

pf dpµ for every pf P L1p pX, pΣ, pµq.
Next, denote the projections onto the ith coordinate by

πi : pX Ñ R,

i.e. πippxnqq � xi. By assumption, π0 P L1p pX, pΣ, whµq and T iτπ0 � πi. Therefore

1
n

n�1̧

i�0

πi
a.e.ÝÑ

»
xX

π0 dpµ � »
R
t dµptq � Ef0.

In the final step we have to transfer the a.e.-convergence on pX to the a.e.-convergence
on Ω. The set of all finite products

±
jPJ gj �πj with 0 ¤ gj P L1pR,B, µq is total in

L1p pX, pΣ, pµq by construction of the product σ-algebra. On these elements we define
a mapping Φ by

Φp
¹
jPJ

gj � πjq :�
¹
jPJ

gj � fj .

From »
R

�¹
jPJ

gj � πj dpµ	 �¹
jPJ

�»
R
gj dµ

	
�

¹
jPJ

�»
Ω

gj � fj dP
	

�
»
Ω

¹
jPJ

gj � fj dP �
»
Ω

Φ
�¹
jPJ

gj � fj
	

dP

it follows that Φ can be extended to a linear isometry

Φ : L1p pX, pΣ, pµq Ñ L1pΩ,A ,Pq.

But, Φ is positive, hence preserves the order structure of the L1-spaces and by
(V.D.6) the a.e.-convergence. Therefore,

1
n

n�1̧

i�0

Φpπiq � 1
n

n�1̧

i�0

fi

converges a.e. to ∫
Ω

Φpπ0q dP � Ef0.

Remark: In the proof above we constructed a Markov shift corresponding to
ppx,Aq � µpAq, x P R, A P B.

References: Bauer [1968], Kolmogorov [1933], Lamperti [1977].
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V.D.8. Ergodic theorems for non-positive operators:
The positivity of the operator is essential for the validity of the individual ergodic
theorem. It is however possible to extend such theorems to operators which are
dominated by positive operators. First we recall the basic definitions from Schaefer
[1974].

Let E be an order complete Banach lattice. T P L pEq is called regular if T is the
difference of two positive linear operators. In that case,

|T | :� suppT,�T q
exists and the space L rpEq of all regular operators becomes a Banach lattice for
the regular norm

}T }r :� }|T |}.
If E � L1pµq or E � L8pµq then LrpEq � L pEq and } � } � } � }r (Schaefer [1974],
IV.1.5). This yields an immediate extension of (V.3).

Proposition 1: Let pX,Σ, µq be a probability space, E � L1pX,Σ, µq and T P
L pEq. If T is a contraction on L1pµq and on L8pµq then T is individually ergodic.

Proof. |T | still satisfies the assumptions of (V.3), hence (V.4) and (V.5) are valid
for |T |. But �T ¤ |T | implies the analogous assertion for T , hence T is individually
ergodic.

For 1   p   8, we have L rpLpq � L pLpq in general but by similar arguments
we obtain from (App.V.8):

Proposition 2: Every regular contraction T , i.e. }T }r ¤ 1, on an Lp-space,
1   p   8 is individually ergodic.

References: Chacón- Krengel [1964], Gologan [1979], Krengel [1963], Sato [1977],
Schaefer [1974].

V.D.9. A non-commutative individual ergodic theorem:
L8pX,Σ, µq is the prototype of a commutative W�-algebra. Without the assump-
tion of commutativity, every W�-algebra can be represented as a weakly closed
self-adjoint operator algebra on a Hilbert space (e.g. see Sakai [1971], 1.16.7). Since
such algebras play an important role in modern mathematics and mathematical
physics the following generalization of the Dunford-Schwartz individual ergodic
theorem may be of some interest.

Theorem (Lance, 1976; Kümmerer, 1978):
Let A be a W�-algebra and T P L pA q a weak� continuous positive linear operator
such that T1 ¤ 1 and T�µ ¤ µ for some faithful (= strictly positive) state µ in
the predual A�. Then the Cesàro means Tnx converge almost uniformly to x̄ P A
for every x P A , i.e. for every ε ¡ 0 there exists a projection pε P A such that
µppεq   ε and }pTnx� x̄qp1� pεq} Ñ 0.

References: Conze-Dang Ngoc [1978], Kümmerer [1978], Lance [1976], Yeadon
[1977].


