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IV. The Mean Ergodic Theorem

“Ergodic theory is the study of transformations from the point of view of ... dynam-
ical properties connected with asymptotic behavior” (Walters [1975], p. 1). Here,
the asymptotic behavior of a transformation ¢ is described by
[43 3 b2 n
BLAN

where it is our task first to make precise in which sense the “lim” has to be under-
stood and second to prove its existence. Motivated by the original problem “time
mean equals space mean” (see III.D.6) we investigate in this lecture the existence
of the limit for n — o0 not of the powers " but of the “Cesaro means”

1n—1 )
E;f‘“ﬂ

where f is an “observable” (see physicist’s answer in Lecture I) contained in an ap-
propriate function space. With a positive answer to this question - for convergence
in L2-space - ergodic theory was born as an independent mathematical discipline.

IV.1 Theorem (J. von Neumann, 1931):
Let (X, %, 1; 9) be and MDS and denote by T,, the induced (unitary) operator on
L?(X,%, ). For any f € L?(u) the sequence of functions

ln—l )
fn:=E;)T;f, neN

(norm-)converges to a Tl-invariant function f e L?(u).

It was soon realized that only a few of the above assumptions are really neces-
sary, while the assertion makes sense in a much more general context. Due to the
importance of the concept and the elegance of the results, an axiomatic and purely
functional-analytic approach seems to be the most appropriate.

IV.2 Definition:

An FDS (E;T) (resp. a bounded linear operator T') is called mean ergodic, if the
sequence

n—1
1 ]
T,:==>'T, neN

converges in .Z(F) for the strong operator topology.

As above, the operators T}, will be called the “Cesdro means” of the powers T°.
Moreover we call P := lim,,_,, T, if it exists, the “projection corresponding to T”.
This language is justified by the following elementary properties of mean ergodic
operators.

IV.3 Proposition:
(0) id=T)T,, = =(id = T") for every n e N
If T is mean ergodic with corresponding projection P, we have
(1) TP=PT =P = P2
2) PE=F:={feE:Tf=f}
) P~Y0)=(d-T)E.
) The adjoints T, converge to P’ in the weak*-operator topology of .Z(E’) and
PE =F :={f'eF:Tf = f}.

1
n

(
(3
(4
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(5) (PE)" is (as a topological vector space) isomorphic to P’'E’.

Proof.

(0) is obvious from the definition of T,.

(1) Clearly, (n + 1)Ty,+1 —id = nT,,T = nTT, holds. Dividing by n and letting n
tend to infinity we obtain P = PT = TP. From this we infer that T,,P = P
and thus P? = P.

(2) PE C F follows from TP = P, and F € PE from P = lim,,,, T},.

(3) By the relations in (1), (id — T)E and (by the continuity of P) its closure is
contained in P~1(0). Now take f € P~1(0). Then

o 14, i

f=f=Pf=f=PTf=lim(d-T,T)f = lim — > (id=T")f

=1

n—uxK

= lim (id — T)% MiTif e (id=T)E.
=1

(4) By the definition of the weak® operator topology, T, converges to P’ if (T, f, f'> =
T = S, P fy =(Pf, f" for f € E and f' € E’. This follows from
the convergence of T;, to P in the strong operator topology. Together with
(PT) = T'P' = P’ this implies the remaining property as in (2).

(5) This statement holds for every projection on a Banach space (see B.7, Propo-
sition).

m

Our main result contains a list of surprisingly different, but equivalent characteri-
zations of mean ergodicity at least for operators with bounded powers.

IV.4 Theorem:
If (E;T) is an FDS with |[T"| < ¢ for every n € N the following assertions are
equivalent:

a) T is mean ergodic.
b) T, converges in the weak operator topology.
¢) {T,.f : n € N} has a weak accumulation point for all f € F
d)
)

(
(
(d) @o{T*f : i€ Ny} contains a T-fixed point for all f € E.

(e) The T-fixed space F separates points of the T"-fixed space F”.

Proof. The implications (a) = (b) = (c) are trivial.

(¢c)= (d): Take f € FE and let g be a weak accumulation point of {T,,f : n € N},
ie. ge {Tf:n> nO}U(E’E) for all ng € N. Certainly, g is contained in co{T"f :
i € Np}, and we shall show that g is fixed under T: For any ng € N we obtain

g—Tg=(d—T)ge (id—=T){Tnf :n>no} € {Gd—T)Tnf:n>no}

= (RAd =T f in>ng} € (1 + )0,

where U is the closed unit ball in E — we used the fact that (id — T) is continuous
for the weak topology and that U is weakly closed (see B.7 and B.3).
(d) = (e) : Choose f',¢' € F', f' # ¢', and f € E with {f, f"> # {f,¢'). For

all elements fo € @(T"f : i € No} we have (fo, ') = (f, f'> and {fo, g’y = (f,¢>
Therefore the T-fixed point f; € co{T'f : i € N} which exists by (d), satisfies
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<f15 fl> = <fa fl> 7 <fa gl> = <f1agl>7 ie. it Separates f’ and g/'

(e) = (a): Consider

G:=F®(id-1T)E
and assume that f’ € E’ vanishes on G. Since it vanishes on (id — T')E it follows
immediately that f’ € F’. Since it also vanishes on F’, which is supposed to separate
F', we conclude that f’ = 0, hence that G = E. But T,,f converges for every f €
F@(id—T)FE, and the assertion follows from the equicontinuity of {T,, : n € N}. =

The standard method of applying the above theorem consists in concluding mean
ergodicity of an operator from the apparently “weakest” condition (IV.4.c) and
the weak compactness of certain sets in certain Banach spaces. This settles the
convergence problem for the means T),, as long as the operator T is defined on the
right Banach space FE.

IV.5 Corollary:
Let (E;T) be an FDS where E is a reflexive Banach space, and assume that |77 <
c for all n € N. Then T is mean ergodic.

Proof. Bounded subsets of reflexive Banach spaces are relatively weakly compact
(see B.4). Since {T),f : n € N} is bounded for every f € E, it has a weak accumu-
lation point. L]

Besides matrices with bounded powers on R™ we have the following concrete
applications:

Example 1: Let E be a Hilbert space and T' € Z(FE) be a contraction. Then T'
is mean ergodic and the corresponding projection P is orthogonal: By (IV.5) the
Cesaro means T, of T converge to P and the Cesar6é means T* of the (Hilbert space)
adjoint T* converge to a projection Q. If (-]-) denotes the scalar product on E, we
obtain from (T)F f|g) — (Qflg) and (f|Tg) — (f|Pg) for all f,g € E that Q = P*.
The fixed space F' = PFE of T and the fixed space F* = P*FE of T* are identical:
Take f € F. Since |T|| = |T*| < 1, the relation (f|f) = (Tf|f) = (f|T*f) implies
(F1O) < IF1- 1T £l < 12 = (fIf), hence T* f = f. The other conclusion F* € F
follows by symmetry. Finally we conclude from P = P*P = (P*P)* = P* that P
is orthogonal.

Example 2: Let (X, 3, ;@) be an MDS. The induced operator T, on LP(X, o, j1)
for 1 < p < o0 is mean ergodic, and the corresponding projection P is a “conditional
expectation” (see B.24):

For f,ge L™ and T, f = f we obtain T,,(fg) =T, - T,9 = f - T,g. The same holds
for (Ty,)y, and therefore P(fg) = f - Pg.

Both examples contain the case of the original von Neumann theorem (IV.1).

IV.6 Corollary:
Let (E;T) be an FDS where E = LY(X, %, ), u(X) < oo, and T is a positive
contraction such that 71 < 1. Then T is mean ergodic.

Proof. The order interval [—1,1] := {f € L'(u) : =1 < f < 1} is the unit ball of
the dual L*(u) of L'(u) and therefore o(L*, L')-compact. The topology induced
by o(L', L*) in [—1,1] is coarser than that induced by o(L*, L') — since L™ (1) <
L'(u) — but still Hausdorff. Therefore the two topologies coincide (see A.2) and
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[—1,1] is weakly compact. By assumption, T" and therefore the Cesaro means T,
map [—1,1] into itself, hence (IV.4.c) is satisfied for all f € L% (u). As shown in
(B.14) the same property follows for all f € L(u). L]

Using deeper functional-analytic tools one can generalize the above corollary still
further: Let T be a positive contraction on L!'(X,Y, 1) and assume that the set
{T,,u : n € N} is relatively compact for some strictly positive function u € L!(u).
By [Schaefer, I1.8.8] it follows that | J,,.y{g € I* (1) : 0 < g < Ty,u} is also relatively
weakly compact. From 0 < T, f < T,u fo 0 < f < u, (B.14) and (IV.4.c) we
conclude that T' is mean ergodic (see Ito [1965], Yeadon[1980]).

Example 3: Let (X, X, u; ) be an MDS. The induced operator T}, in L*(X, X, u)
is mean ergodic, and the corresponding projection is a conditional expectation: The
first assertion follows from (IV.6) while the second is proved as in Example 2 above.

Example 4: Let E = L'([0, 1], B,m), m the Lebesgue measure, and k : [0,1]? —
1

R4 be a measurable function, such that [ k(x,y) dy = 1 for all z € [0,1]. Then the
0

kernel operator

T:E—E, fw—Tf(z):= _fo k(x,y)f(y) dy

is mean ergodic.

Even though there is still much to say about the functional-analytic properties of
mean ergodic operators, we here concentrate on their ergodic properties as defined
in Lecture ITI. A particularly satisfactory result is obtained for MDSs, since the
induced operators are automatically mean ergodic on LP(u), 1 < p < oo.

IV.7 Proposition:

Let (X,%, ;) be an MDS and E = LP(X,3, 1), 1 < p < co. Then T, is mean

ergodic and the following properties are equivalent:

(a) ¢ is ergodic.

(b) The projection corresponding to T, has the form P = 1®1, i.e. Pf ={f,1)-1
forall fe E

n—1
(€) % X [(f o) g du converges to [ f dp- [ g dufor all f € L7 (), g € L¥(u) =

L(u) with % + % =1.
n—1
(d) £ > w(Ane ' (B)) converges to u(A) - u(B) for all A, B € X.

[l
o)

(A N o 1(A)) converges to u(A)? for all Ae 3.
0

—
)
N
Sl

i

Proof.

(a) = (b): Since ¢ is ergodic and T, is mean ergodic, the fixed spaces of T, and T,
are one-dimensional (IIT.4 and IV.4.e). Since P is a projection onto the T, -fixed
space it must be of the form f +— Pf = {f, f/)1 for some f’' € E'. But

L fdu=(F 1y = (F T = (f, Py = (PR Y = (f, - (1 1) = (F, £

shows that P=1® 1.
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n—1

(b) = (c): Condition (c) just says that L > T}, converges toward 1®1 in the weak
i=0

operator topology for the particular space LP(u) and its dual L?(u).

(¢) = (d): This follows if we take f = 14 and g = 1. The implication

(d) = (e): is trivial.

n—1
(e) = (a): Assume that p(A) = A€ ¥. Then L 3 (AN (A)) is equal to p(A)
i=0

and converges to u(A)2. Therefore ;(A) must be equal to 0 or 1. ]

Remark: Further equivalences in (IV.7) are easily obtained by taking in (c) the
functions f, g only from total subsets, resp. in (d) or (e) the sets A, B only from a
subalgebra generating .

The “automatic” mean ergodicity of T, in L”(u), 1 < p < o (by Example 2 and
5) is the reason why ergodic MDSs are characterized by the one-dimensional fixed
spaces (see I11.4). In fact, mean ergodicity is a rather weak property for operators
on LP(u), p # oo, in the sense that many operators (e.g. all contractions for p # 1
or all positive contractions satisfying T1 < 1 for p = 1) are mean ergodic.

For operators on spaces C'(X) the situation is quite different and mean ergodicity
of T'e £(C(X)) is a very strong property. The reason is that the sup-norm ||| is
much finer than | - |,, therefore it is more difficult to identify weakly compact orbits
(in order to apply IV.4.c) or the dual fixed space (in order to apply IV.4.e). Even
for operators Ty, on C(X) induced by a TDS one has mean ergodicity only if one
makes additional assumptions, e.g. (IV.8 below or VIIL.2). This non-convergence
of the Cesaro means of T, accounts for many of the differences and additional
complications in the topological counterparts to measure theoretical theorems. A
first example is the characterization of minimality by one-dimensional fixed spaces.

IV.8 Proposition:

For a TDS (X; ¢) the following are equivalent:

(a) T, is mean ergodic in C'(X) and ¢ is minimal.

(b) There exists a unique @-invariant probability measure, and this measure is
strictly positive.

Proof. (a) = (b): From (IIL.7.i) and (IV.4.e) we conclude that dim F' = dim F’ =1
for the fixed spaces F' in C(X), resp. F' in C(X)'. Since T, is a positive operator,
so is P and hence P’. Every element in C'(X)’ is a difference of positive elements,
the same is true for F’ = P'C(X)’ and therefore F’ is the subspace generated by a
single probability measure called v.

Let 0 < f € C(X) with (f,v) = 0 and define Y := ({[f o™ = 0] : n € Z}.
Then is closed and @-invariant, and therefore Y = ¢ or Y = X. If Y = X, then
f =0, whereas if Y = ¢ implies that for all x € X one has f o ¢™(z) > 0 for some
n € Z. Since {f,vy = (F o ", v) for all n € N, this shows that {f,v) > 0.

(b) = (a): Let f' € C(X)" be T,-invariant. Since T, is positive, we obtain

|1 =T f T < T f|
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and (1, [f') < (LILIFD = TLIF) = (LIfD. Hence (LILIF| — |f/]) =
(T f') — A, |f']) = 0, therefore |f'| is T -invariant, and the dual fixed space
F’ is a vector lattice. Consequently every element in F’ is difference of positive
elements and — by assumption — F’ is one-dimensional and spanned by the unique
(p-invariant probability measure v. Apply now (IV.4.e) to conclude that T, is mean
ergodic. Again the corresponding projection is of the form P = 1 ®v. Assume now
that Y € X is closed and @-invariant. There exists 0 < f € C'(X) with f(Y) < {0},
T, f(Y) < {0}, therefore (Pf)(Y) < {0}. Hence ()f( fdr)1(Y) < {0} and ¥ must

be empty. [

Example 5: The rotation ¢, induces a mean ergodic operator Ty, on C(I'): If
a™ =1 for some ng € N, the operator T,,, is periodic (i.e. Ty = id) and therefore
mean ergodic (see IV.D.3).

In the other case, every probability measure invariant under ¢, is invariant un-
der pgnfor all n € N and therefore under all rotations. By (D.5) the normalized

Lebesgue measure is the unique probability measure having this property, and the
assertion follows by (IV.8.b).

The previous example may also be understood without reference to the uniqueness
of Haar measure: Let G be a compact group. The mapping

G — Z/(C(GQ)):h—T,, (see 11.2.2)
is continuous, hence the orbits — as well as their convex hulls — of any operator T,
are relatively (norm)compact in C(G). Then apply (IV.4.c) to obtain the following
result.
IV.9 Proposition:
Any rotation operator on C(G), G a compact group, is mean ergodic.

Exercise: The fixed space of T,, in C(G), where ¢, is the rotation by g on the
compact group G, is one-dimensional if and only if {g¥ : k € Z} is dense in G.

IV.D Discussion

IV.D.0 Proposition:

Assume that a € I'is not a root of unity. The induced rotation operator T,,, is mean
ergodic on the Banach space R(T") of all bounded Riemann integrable functions on
I' (with sup-norm), and the (normalized) Riemann integral is the unique rotation
invariant normalized positive linear form on R(T").

Proof. First, we consider characteristic functions y of “segments” on I' and show
that the Cesaro means

1 n—1
T,x = — i
= - ) Tox
=0
converge in sup-norm || - [«
For € > 0 choose f;, g. € C(I") such that
O0<fesx<y:

and §(9: — fe) dm <, m Lebesgue measure on I'.
r
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But T := T, is mean ergodic (with one-dimensional fixed space) on C(T'), i.e.

TngaMSgedm-l

r
and Tnfews.fadm'1~
r
From T, f. < T,,x < T, 9. we conclude that | - || — lim,,—,-, T}, x exists and is equal

to [xdm - 1. Now, let f be a bounded Riemann integrable function on I'. Then
r
for every € > 0 there exist functions g1, go being linear combinations of segments
such that
g1 < f<ge and {(g2—g1)dm <e,
r

and an easy calculation shows that

I+l = Jim Tof = (§ £ ) - 1.

Finally, since the fixed space of T in R(T'), which is equal to the fixed space un-
der all rotations on I', has dimension one, the mean ergodicity implies the one-
dimensionality of the dual fixed space. (]

The preceding result is surprising, has interesting applications (see IV.D.6) and
is optimal in a certain sense:

Example 6: The rotation operator T, induced by ¢,, a € I" not a root of unity,
is mean ergodic

neither on (i) L™(T, B, m)
nor on (ii) B(T"), the space of all bounded Borel measurable

functions on I' endowed with the sup-norm.

Proof. (i) The rotation ¢, is ergodic on I', hence the fixed space of T' := T, in
L'(m) and a fortiori in L*(m) has dimension one. We show that the dual fixed
space F' is at least two-dimensional: Consider A := {a" : n € Z} and I := {]\‘/ €
L*(m) : there is f € f vanishing on some neighbourhood (depending on f) of A}.
Then I is # {0}, T-invariant and generates a closed (lattice or algebra) ideal J in
L*(m). From the definition follows that TJ € J and 1 ¢ J. Consequently, there
exists v € (L*(m))’ such that {1,v) = 1, but v vanishes on J. The same is true
for T'v and T, v for all n € N. By the weak* compactness of the dual unit ball
the sequence {T)v},en has a weak® accumulation point vg. As in (IV.4), ¢ = d
we show that vy € F’. Since (1,1p) = 1 and {f,1y) = 0 for f € J, we conclude
0 # vy #m.

(ii) Take a 0-1-sequence (c¢;);en, Which is not Cesaro summable, i.e.

1 n—1

lim — ;

I
i=0

does not exist. The characteristic function x of the set

{a" ¢, =1}
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is a Borel function for which
Tyx(a)

does not converge, hence the functions T;,x do not converge in B(T'). [

IV.D.1. “Mean ergodic” vs. “ergodic”:

The beginner should carefully distinguish these concepts. “Ergodicity” is a mix-
ing property of an MDS (X, X, ;) (or a statement on the fixed space of T,
in LP(X,%, 1)), while “mean ergodicity” is a convergence property of the Cesaro
means of a linear operator on a Banach space. More systematically we agree on
the following terminology: “Ergodicity” of a linear operator T € .Z(F), E Banach
space, refers to the convergence of the Cesaro means T}, with respect to the uniform,
strong or weak operator topology and such operators will be called “uniformly er-
godic”, “strongly ergodic”, resp. “weakly ergodic”. For {T™ : n € N} bounded, it
follows from Theorem (IV.4) that weakly ergodic and strongly ergodic operators
coincide. Therefore and in order to avoid confusion with “strongly ergodic” trans-
formations (see IX.D.4) we choose a common and different name for such operators
and called them “mean ergodic”. Here, the prefix “mean” refers to the convergence
in the L?-mean in von Neumann’s original ergodic theorem (IV.1). “Uniform er-
godicity” is a concept much stronger than “mean ergodicity” and will be discussed
in Appendix W in detail.

IV.D.2. Mean ergodic semigroups:

Strictly speaking it is not the operator T' which is mean ergodic but the semigroup
{T™ : n € Ny} of all powers of T. More precisely, in the bounded case, mean
ergodicity of T is equivalent by (IV.4.d) to the following property of the semigroup
{T™ : n e Ny}: the closed convex hull

@{T” ‘N e No}

of {T™ : n € Ny} in % (FE), which is still a semigroup, contains a zero element,
i.e. contains P such that

SP=PS=P

for all S € co{T™ : n € No} (Remark: PT = TP = P is sufficient!). This point of
view is well suited for generalizations which shall, be carried out in Appendix Y. As
an application of this method we show that every root of a mean ergodic operator
is mean ergodic, too.

Theorem: Let E be a Banach space and S € Z(FE) be a mean ergodic operator
with bounded powers. Then every root of S is mean ergodic.

Proof. Assume that S := T* is mean ergodic with corresponding projection Pij.
Define P := (1 3"~0 T9)Pg and observe that P € @{T" : i € No} and TP :=
(¢ Zf;é TitY)Pg = P, (T*Ps = Ps). Therefore, T is mean ergodic (see IV.4.d
and P is the projection corresponding to 7. [

On the contrary, it is possible that no power of a mean ergodic operator is mean
ergodic.

Example: Let S : (25)nen, — (Tn+1)nen, be the (left)shift on £*(Np) and take a
0-1-sequence (an)nen, Which is not Cesaro summable.
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For k > 1 we define elements xj, € £*(Np):

Thyn 1= an for n = ki (i € Ny)
Tk = (Th.n)nen, DY Tk = —an—1 forn==Fki+1 (ieNy)
k
Ty =0 otherwise.

Consider the closed S-invariant subspace E generated by {S%zy : i € Ng, k > 1} in
(*(Ng) and the restriction T := S|p. By construction we obtain [T,z < 2 for
all £ > 1. Consequently, T is mean ergodic with corresponding projection P = 0.

On the other hand the sequence (% Zﬁ_ol xk,ki) = (i 21’51 ai) is not
meN meN

m
convergent for k > 1, i.e. the Cesaré means TF (x}) of the powers T i € N,
applied to zy, do not converge. Therefore, no power T (k > 1) is mean ergodic.

References: Sine [1976].

IV.D.3. Examples:

(i) A linear operator T on the Banach space E = C is mean ergodic if and only
if |T|| < 1. Express this fact in a less cumbersome way!

(ii) The following operators T' € Z(E), E a Banach space, are mean ergodic with

corresponding projection P:

T periodic with 77 = id, ng € N, implies P = L Y™~ 7,

no

(b) T with spectral radius r(T) < 1 (e.g. |7 < 1) implies P = 0.
(¢) T has bounded powers and maps bounded sets into relatively compact sets.
(d) T(z1,z2,23,...) = (0,21,22,...) on P, 1 < p < o0.

Tf() = [ f(y) dy for 1 € C((0,1]).

The following operators are not mean ergodic:

Tf(x)=a- f(z) on C([0,1]): F = {0} but |T,,]| =1 for all n e N.

Tf(x) = f(x?) on C([0,1]): F = <1) but Dirac measures dg, §; are contained

in B’

(¢) T(x1,m2,23,...) = (0,21,22,...) on £*: F = {0} but |T,(zx)| = ||(zx)| for
0 < (xk) € 61.

(d) T(z1,z2,23,...) = (x2,x3,24,...) on £*: 0 — l-sequence which is not Cesaro

summable.

)
)
|
) T(z1,22,x3,...) = (X2, 23,24,...) on P, 1 < p < 0.
)
)
)
)

IV.D.4. Convex combinations of mean ergodic operators:

Examples of “new” mean ergodic operators can be obtained by convex combina-
tions of mean ergodic operators. Our first lemma is due to Kakutani (see Sakai
[1977], 1.6.6)

Lemma 1: Let E be a Banach space. Then the identity operator id is an extreme
point of the closed unit ball in Z(E)

Proof. Take T' € Z(E) such that |id+ T < 1 and [id — 7| < 1. Then the same
is true for the adjoints: [id + 77| < 1 and [id' — 7’| < 1. For f’ € E’ define
fl = (d" + T")f". resp. f3 := (id' — T")f’, and conclude f' = 3(f{ + f}) and
10 I1f5] < |f/]- A soon as f is an extreme point of the unit ball in E’ we obtain
f" = fi = f4 and hence T'f" = 0. But by the Krein-Milman theorem this is
sufficient to yield 7" = 0, and hence 7 = 0. Now assume that id = (R + S)



for contractions R, S € Z(F), and define T := id — R. This implies id = T = R
and id + T = 2id — R = S. By the above considerations it follows that T' = 0,
ie.id=R=S5. n

Lemma 2: Let R,S be two commuting operators with bounded powers on a
Banach space E, and consider

T:=aR+(1-a)S
for 0 < @ < 1. Then the fixed spaces F(T), F(R) and F(S) of T, R and S are

related by
F(T)=F(R) n F(95).

Proof. Only the inclusion F(T) € F(R) n F(S) is not obvious. Endow F with an
equivalent norm |z|; := sup{|R"S™z| : n,m € No}, z € E and observe that R and
S are contractive for the corresponding operator norm. From the definition of T
we obtain

idpry = Tlpr) = aR|pr) + (1 — a)S|per)
and R|p(ry, S|p(ry € ZL(F(T)), since R and S commute. Lemma 1 implies Rp(r) =
S|F(T) =idF(T),i.e. F(T)EF(R)GF(S) |

Now we can prove the main result.

Theorem:
Let E be a Banach space and R, S two commuting operators on E with |R"|, [|S"| <
cfor all n e N. If R and S are mean ergodic, so is every convex combination

T:=aR+(1-a)S, 0<a<l.

Proof. Let 0 < @ < 1. By Lemma 2 we have F(T) = F(R) n F(S) and F(T') =
F(R') n F(S"), and by (IV.4.e) it suffices to show that F(R) n F(S) separates
F(R') n F(5): For f' # ¢’ both contained in F(R') n F(S’) there is f € F(R)
with {f, f'> # {f,¢"). Since SF(R) € F(R) we have Psf € F(R) n F(S) where Pg
denotes the projection corresponding to S. Consequently

<PS'f7fl>=<f7P§f/>=<fvPS"fl>=<f7fl>¢<fag/>=<PSfug/>'

The following corollaries are immediate consequences.

Corollary 1:
For T, R and S as above denote by Pg, resp. Ps the corresponding projections.
Then the projection Pr corresponding to T is obtained as

PT = PRPS = PSPR = IIH;(RnSn)

Corollary 2:
Let {R; : 1 < ¢ < m} be a family of commuting mean ergodic operators with
bounded powers. Then every convex combination 7' := Zzn:l «a; R; is mean ergodic.
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IV.D.5. Mean ergodic operators with unbounded powers:
A careful examination of the proof of (IV.4) shows that the assumption

|77 < ¢ for all n € Ny,

may be replaced by the weaker requirements
1
lim — 7" =0 and ||T,|<c¢ forallneN.
n—own

The following example (Sato [1977]) demonstrates that such situations may occur.
We define two sequences (a,)neny and (by)nen-

ar=1, a,=2-4"2 forn>2

and bn=Zai=%(2-4”*1+l) for n e N.
i—1
Endow X :={(n,i):neN,1<i<b,}

with the power set as g-algebra X, and consider the measure u defined by

21-n if1<i<a,
v({ln—1,i—ay)}) ifa, <i<by,.

v({(n,9)}) == {

Observing that 2?21 v({(n,i)}) = 2"~ we obtain a probability measure yu on ¥ by

p({(n,i)}) i=2-47" - v({(n, i)}).

The measurable (not measure-preserving!) transformation

(nyi+1) forl<i<b,
(n+1,1) fori="b,

|
on X induces the desired operator T := T, on L*(X, 3, p).

First, it is not difficult to see that |T%|| = 2" for k = b,, b, + 1,...,bu41 — 1. This
shows that sup{|T"| : k € N} = o0 and limy—,. 1[T%] = 0.

Second, for b, + 1 < k < b,41 we estimate the norm of the Cesaré means

1 bnt1 , o
1< ety 2 0+ 10D = 3y <6

Finally, T is mean ergodic: With the above remark this follows from (IV.4.c) as in
(IV.6).

IV.D.6. Equidistribution mod 1 (Kronecker, 1884; Weyl, 1916):

Mean ergodicity of an operator T" with respect to the supremum norm in some
function space is a strong and useful property. For example, if T = T, for some
@ : X — X and if x = 14 is the characteristic function of a subset A € X, then

n—1 n—1
1 ) 1 ;
J 5 2 Tx@) = Ji 20 X)), we X

is the “mean frequency” of visits of ¢™(z) € A. Therefore, if x is contained in some
function space on which T' is mean ergodic (for | - ||,.), then this mean frequency
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exists (uniformly in x € X). Moreover, if the corresponding projection P is one-
dimensional, hence of the form P = p ® 1, the mean frequency of visits in A is
equal to p(A) for every z € X.

This observations may be applied to the “irrational rotation” ¢, on I' and to the
Banach space R(P) of all bounded Riemann integrable functions on T" (see IV.D.0).
Thus we obtain the following classical result on the equidistribution of sequences
mod 1.

Theorem (Weyl, 1916):
Let £ € [0,1]\Q. The sequence (&, )nen := n€ mod 1 is (uniformly) equidistributed
in [0, 1], i.e. for every interval [a, 8] € [0, 1] holds

o N8 _

n—wx n

where N(a, 8,n) denotes the number of elements &; € [a, §] for 1 < i < n.

This theorem H. Weyl [1916] is the first example of number-theoretical conse-
quences of ergodic theory. A first introduction into this circle: of ideas can be
found in Jacobs [1972] or Hlawka [1979], while Furstenberg [1981] presents more
and deeper results.

IV.D.7. Irreducible operators on LP-spaces:

The equivalent statements of Proposition (IV.7) express essentially mean ergodicity
and some “irreducibility” of the operator T, corresponding to the transformation
. Using more operator theory, further generalizations should be possible (see also
II1.D.11). Here we shall generalize (IV.7) to FDSs (F;T), where E = LP(X, %, 1),
w(X)=1,1<p<oo,and T € Z(F) is positive satisfying 71 =1 and 7”1 = 1.

First, an operator-theoretical property naturally corresponding to “ergodicity” of
a bi-measure-preserving transformation has to be defined.

Definition:

Let (E;T) be an FDS as explained above. A set A € X is called T-invariant if
T14(x) =0 for almost all z € X\A. The positive operator T is called irreducible if
every T-invariant set has measure 0 or 1.

Remarks:

1. It is obvious that for an operator T, induced by an MDS (X, X, y1; ¢) irreducibil-
ity of T, is equivalent to ergodicity of ¢

2. If E is finite-dimensional, i.e. X = {z1,...,2,}, and T is reducible, i.e. not
irreducible, then there exists a non-trivial T-invariant subset A of X. After a
permutation of the points in X we may assume A = {z1,...,zx} for 1 <k <n.
Then T14(x) = 0 for all x € X\ A means that the matrix associated with T has
the form
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Proposition: Let (E;T) be an FDS formed by E = LP(X, %, pn), p(X) = 1,
1 < p < o0, and a positive operator T satisfying 71 = 1 and 71 = 1. Then T is
mean ergodic and the following statements are equivalent:

(a) T is irreducible.

)

) The corresponding mean ergodic projection has the form P =1®1.
(c) (T, f,g) converges to ){ fdp-§y gdu for every f e LP(u), g€ L'(p).
)

)

Proof. Observe first that the assumptions 71 = 1 and 71 = 1 imply that T
naturally induces contractions on L!(u), resp. L”(p). From the Riesz convexity
theorem (e.g. Schaefer [1974], V.8.2) it follows that |T|| < 1. Consequently, T is
mean ergodic by (IV.5) or (IV.6)

(a)= (a’): Assume that the T-fixed space F contains a function f which is not
constant. By adding an appropriate multiple of 1 we may obtain that f assumes
positive and negative values. Its absolute value satisfies

fl = ITf <T|f| and L fldu = fX T1f| du,

hence |f| € F and also 0 < f:= 3(|f| + f) € Fand 0 < f~ := 1(|f] — f) € F.
Analogously we conclude that for every n € N the function

1
f =it f51) = S [ 1= [ - 1)
is contained in F'. From the positivity of T' we obtain
14 =sup{fl :neN}eF

where A := [fT > 0]. Obviously, A is a non-trivial T-invariant set.

The implications (a’) = (b) = (¢) = (d) = (e) follow as in the proof of (IV.7).

(e) = (a): If A is T-invariant the hypothesis T1 = 1 implies T14 < 14 and the
hypothesis 71 = 1 implies that 714 = 14. Therefore,

and the condition (e) implies p(A) € {0, 1}. ]
IV.D.8. Ergodicity of the Markov shift:

As an application of (IV.7) we show that the ergodicity of the Markov shift (X, X, [i; 7)
(see IL1.6) with transition matrix T' = (a,;) and strictly positive invariant distribu-

tion y = (po,...,pr—1)| can be characterized by an elementary property of the
k x k- matrix T.

Proposition: The following are equivalent:

(a) The transition matrix 7" is irreducible.
(b) The Markov shift (X, 3, [i; 7) is ergodic.



39
Proof. As remarked (IV.7) ergodicity of 7 is equivalent to the fact that the induced
operator T'f := for, fe L'(X,X, i), satisfies
(Tla,1p) — B(A) - A(B)
for all A,B € f), which are of the form

and B = [.I_m = b_l, ...... , X = bm]

with a;,b; €{0,...,k —1}.
For n € N so large that n' :=n — (m + 1+ 1) > 0, we obtain

a(r "AmB) BT =b sy Ty = by T = Qg oo s = ay
k—1

= Z Z m=0_m, s Tm = by Tmi1 = C1y- -y, Tingn/ = Cp/,
Cc1= 0

Tp | = |y Tyl = az]
k—1 _

= Z Z (pbf'm H tb bt+l)(tbmcl H Z‘;C'LC'L+1 Cpra— l) H ta Ai4+1

c1 c,1=0 i=—1

= p(B)(r"m Z)bma_, : (pa_z)_lﬁ(A)«

Thus lim,—.{Tp1 4, 15) = A(B)-(imp_r o, a_, - (pa_,) H(A) = A(A)-A(B), iff
(limy,—oe T0)i5 = (1 @ p)ij = pj > 0 for every i, € {0,...,k — 1}. By the assertion
(b) in (IV.D.7, Proposition) the last condition is equivalent to the irreducibility of
T. [

IV.D.9. A dynamical system which is minimal but not ergodic:
As announced in (II1.D.10) we present a minimal TDS (X;¢) such that the MDS
(X, B, 115 ) is not ergodic for a suitable p-invariant probability measure p € M (X).

Choose numbers k; € N, i € Ny, such that

(%) k;_1 divides k; for all 1 € N

and (k) Z k‘ 12

For example we may take k; = 106 ).
For i € N define Z;, :={z € Z: |z — n - k;| < k;_1 for some n € Z} and observe that
Z = J;en Zi, since k; tends to infinity. Therefore

i(z) :==min{j e N: z e Z;}
is well-defined for z € Z. Now take
0 if i(z) is even
= ith =
a:=(a)zez With o {1 if i(2) is odd,
and consider the shift
T (zz)zez = (xz-&-l)zeZ

on {0, 1}Z.
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Proposition: With the above definitions and X := {rsa:se Z} < {0,1}% the
TDS (X;7|x) is minimal, and there exists a probability measure p € M(X) such
that the MDS (X, B, ;7| x) is not ergodic.

Proof. Clearly, X is T-invariant and (X;7|x) is a TDS. The (product) topology on
{0,1}2 — and on X - is induced by the metric
d((z,), (yz)) := inf{t+i1 cx, =y for all |z| < t}
The assertion is proved in several steps.
(i) Take i € N. By definition of the sets Z;, j = 1,...,¢ the number i(z) only
depends on z mod k; for i(z) < i, i.e. the finite sequence of 0’s and 1’s

A—iy A—it1y -, A0y - oy Ai—1, A4

reappears in (a;).ez with constant period. Using the above metric d, the
lemma in (II1.D.5) shows that X is minimal

(ii) We prove that the induced operator 7' := T, on C(X) is not mean ergodic
by showing that for the function € C'(X) defined by

f((xz)zEZ) =7

the sequence (T, f(a))nen does not converge:

1 n—1 1 n
Tnf(a) = - Z f(TZa) = - Z Az,
n n
z=0 z=1
and »)"_, a, is the number of those z (1 < z < n) for which i(z) is odd. Con-
sider n = k; and observe that the set {1, ..., k;} n Z; has exactly %(ij_l +1)
elements for j =1,...,7. Now

o kg o 3k 1k 1k

Z k—j(?kj,1 +1) < Z Jk‘ij < 3k; - B (use (xx)),
j=1 j=1

ie. {1,...,k} n U;’:l Z; contains at most & numbers. However {1,...,k;}

Zi+1, hence

i 3
‘{1, kit 0 (Ziga\ ‘U1 Zj)| = ki,
i

and for all numbers in that intersection we have i(z) = i + 1. In conclusion,
one obtains )
|Ikuqf(a)__1%if(a” = 5'
(iii) Using (IV.8) and (App.S), Theorem 1, we conclude from (ii) taht there exist
at least two different 7-invariant probability measures i, us € C(X)’. For

p = 5(p1 + p2) the MDS (X, B, j1; 7|x) is not ergodic by (App.S).

Remark: For examples on the 2-torus see Parry [1980], and on non-metrizable
subsets of the Stone-Cech compactification of N see Rudin [1958] and Gait-Koo
[1972].

References: Ando [1968], Gait-Koo [1972], Jacobs [1960], Parry [1980], Raimi [1964],
Rudin [1958].
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IV.D.10. Uniquely ergodic systems and the Jewett-Krieger theorem:
For an MDS (X, %, u; ) and for f e LP(X,%, 1), the means

1 n—1 )

~ 2Tt

i=0

converge with respect to the LP-norm for 1 < p < 0. Concerning the convergence
for L*-norm (i.e. sup-norm) we don’t have yet a definite answer, but know that in
general the sup-norm is too strong to yield mean ergodicity of T, on L™ (). This
was shown in example 6 in Lecture IV for any ergodic rotation ¢, on the unit circle
I'. On the other hand, in this same example there exist T, -invariant norm-closed
subalgebras @ of L*(X,¥, ) which are dense in L'(X,¥, ) and on which T,
becomes mean ergodic (e.g. take &/ = C(I") or even R(I'), see (IV.D.0)). Such a
subalgebra & is isomorphic to a space C(Y') for some compact space Y and the
algebra isomorphism on C(Y') corresponding to T, is of the form T, for some home-
omorphism ¢ : Y — Y (use the Gelfand-Neumark theorem (C.9) and (I1.D.5)). The
TDS (Y;%) is minimal, since T is mean ergodic with one-dimensional fixed space,
and therefore it possesses a unique -invariant, strictly positive probability mea-
sure v (see IV.8). Such systems will be called uniquely ergodic, since they determine
a unique ergodic MDS. On the other hand it follows from the denseness of &/ in
LY(T, B, ) that the MDS (T, B,m; ¢,) is isomorphic to (Y, B,v;v) (use VI.2), a
fact that will be expressed by saying that the original ergodic MDS is isomorphic
to some MDS that is uniquely determined by a uniquely ergodic TDS. In fact,
(T', B, m; p,) is uniquely ergodic since 27 can be chosen to be C(I'), but this choice
is by no means unique and &/ = L*(T', B,m) would not work. Therefore we pose
the following interesting question! Is every ergodic MDS isomorphic to an MDS
determined by a uniquely ergodic TDS? As we have explained above, this question
is equivalent to the following:

Problem: Let (X,%, ;) be an ergodic MDS. Does there always exist a T,-
invariant closed subalgebra &/ of L* (X, X, i)

(i) T, is mean ergodic on 7, and

(ii) o is dense in LY(X, %, u)?

The subsequent answer to this problem shows that the rotation (I', B, m;p,) is
quite typical: Isomorphic uniquely ergodic systems always exist, but the algebra
L*(u) is (almost) always too large for that purpose.

Lemma: For an ergodic MDS (X, X, u; ) the following assertions are equivalent:
(a) ¢ is mean ergodic on L™ (X, %, u).
(b) L*(X,X, u) is finite dimensional.

Proof. In view of the representation theorem in (VI.D.6) it suffices to consider
operators
Ty :C(Y)—-C(Y)

induced by a homeomorphism on an extremally disconnected space Y. By assump-
tion (a), Ty is mean ergodic with one-dimensional fixed space and strictly positive
invariant linear form v. Prom (IV.8) it follows that ¢ has to be minimal, and hence
{¢*(y) : k € Z} is dense in Y for every y € Y. The lemma in (VI.D.6) implies that
{¢*(y) : k € Z} and hence {y} is not a null set for the measure corresponding to v.
Therefore, {y} must be open and the compact space Y is discrete.
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Having seen that Ty, is not mean ergodic on all of L*(u) one might try to find
smaller subspaces on which mean ergodicity is guaranteed.
On the other hand

F(T)® (id - T,)L*
is the largest subspace of L*(u) on which T, is mean ergodic (use ??). Unfortu-
nately, this subspace is “never” a subalgebra. More precisely:

IV.D.11 Proposition:

For any ergodic MDS (X, 3, u; ¢) the following assertions are equivalent:
(a) T, is mean ergodic on L™ (u).

(b) L*(u) is finite dimensional.

(c) (1)@ (id — T,)L* is a subalgebra of L™ ().

Proof. 1t suffices to show that (c) implies (a). To that purpose we assume that
the Banach algebra L*(u) is represented as C(Y), Y compact, and the algebra
isomorphism corresponding to T, is of the form Ty : C(Y) — C(Y) for some
homeomorphism ¢ : Y — Y and ¢ # id. Denote by Fix(¢) the fixed point set
of 9. Then every function f € (id — T} )C(Y") vanishes on Fix(¢). Take 0 # g €
(id = Ty)C(Y). Its square g2 is contained in the subspace on which the means of
T, converge and

S i 2 2
nh_I}Iglc - ;} Ty9° = (}S/g dV)]_y
for the strictly positive ¢-invariant measure v. Therefore Fix(¢)) must be empty.
It is now a simple application of Urysohn’s lemma to show that (id — Ti,)C(Y)
separates the points in Y. By the Stone-Weierstrass theorem we obtain that (1)@
(id—Ty)C(Y) is dense in C(Y") and therefore that Ty, is mean ergodic on L (p). m

After these rather negative results it becomes clear that our task consists in finding
“large” subalgebras contained in (1) @ (id — T,)L*(p). This has been achieved
by Jewett [1970] (in the weak mixing case) and Krieger [1972]. Theirs as well as
all other available proofs rest on extremely ingenious combinatorial techniques and
we regret not being able to present a functional-analytic proof of this beautiful
theorem.

Theorem (Jewett-Krieger, 1970):
Let (X, %, ;) be an ergodic MDS. There exists a T-invariant closed subalgebra
o of L*(X, 3, i), dense in L' (X, ¥, i), on which T, is mean ergodic.

Applying an argument similar to that used in the proof of (IV.D.0) the algebra of
the above theorem can be enlarged and the corresponding structure spaces become
totally disconnected. In conclusion we state the following answer to the original
question.

Corollary:
Every separable ergodic (X, 3, u;¢) is isomorphic to an MDS determined by a
uniquely ergodic TDS on a totally disconnected compact metric space.

References: Bellow-Furstenberg [1979], Denker [1973], Hansel [1974], Hansel-Raoult
[1973], Jewett [1970], Krieger [1972], Petersen [1983].



