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III. Recurrent, Ergodic and Minimal Dynamical Systems

“Ergodic theory is the study of transformations from the point of view of recur-
rence properties” (Walters [1975], p. 1). Sometimes, you meet such properties in
daily life: If you walk in a park just after it has snowed, you will have to step into
your own footprints after a finite number of steps. The more difficult problem of
the reappearance of certain celestial phenomena led Poincaré to the first important
result of ergodic theory at the end of the last century.

III.1 Definition:
Let pX, Σ, µ; ϕq be an MDS and take A P Σ. A point x P A is called recurrent to A
if there exists n P N such that ϕnpxq P A.

III.2 Theorem (Poincaré, 1890):
Let pX, Σ, µ; ϕq be an MDS and take A P Σ. Almost every point of A is (infinitely
often) recurrent to A.

Proof. For A P Σ, ϕ�nA is the set of all points that will be in A at time n
(i.e. ϕnpxq P A). Therefore, Arec :� A X pϕ�1A Y ϕ�2A Y . . . q is the set of all
points of A which are recurrent to A.

If B :� A Y ϕ�1A Y ϕ�2A Y . . . we obtain ϕ�1B � B and AzArec � Bzϕ�1B.
Since ϕ is measure-preserving and µ finite, we conclude

µpAzArecq � µpBq � µpϕ�1Bq � 0,

and thus the non-recurrent points of A form a null set. For the statement in
brackets, we notice that pX, Σ, µ; ϕkq is an MDS for every k P N. The above results
implies

µpAkq � 0 for Ak :�  
x P A : pϕkqnpxq R A for n P N(.

Hence, A8 :� �8
k�1 Ak is a null set, and the points of AzA8 are infinitely often

recurrent to A.

We explained in the physicist’s answer in Lecture I that the dynamics can be
described by the MDS pX, Σ, µ;ϕq on the state space

X :� tcoordinates of the possible locations and impulses of the

1000 molecules in the boxu
As the set A to which recurrence is expected we choose

A :� tall 1000 molecules are located on the left hand sideu.
Since µpAq ¡ 0, we obtain from Poincaré’s recurrence theorem a surprising conclu-
sion contradicting somehow our daily life experience.
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“Ergodic theory is the study of transformations from the point of view of mixing
properties” (Walters [1975] p. 1), where “mixing” can even be understood literally
(see Lecture IX). In a sense, ergodicity and minimality are the weakest possible
“mixing properties” of dynamical systems. Another, purely mathematical moti-
vation for the concepts to be introduced below is the aim of defining (and then
classifying) the “indecomposable” objects, e.g. simple groups, factor von Neumann
algebras, irreducible polynomials, prime numbers, etc.. From these points of view
the following basic properties (III.3) and (III.6) appear quite naturally.

III.3 Definition:
An MDS pX, Σ, µ; ϕq is called ergodic if there are no non-trivial ϕ-invariant sets
A P Σ, i.e. ϕpAq � A implies µpAq � 0 or µpAq � 1.

It is obvious that an MDS which is not ergodic is “reducible” in the sense that
it can be decomposed into the “sum” of two MDSs. Therefore the name “irre-
ducible” instead of “ergodic” would be more intuitive and more systematic. Still,
the use of the word “ergodic” may be justified by the fact that ergodicity in the
above sense implies the validity of the classical “ergodic hypothesis”: time mean
equal space mean (see III.D.6), and therefore gave rise to “ergodic theory” as a
mathematical theory. Our first proposition contains a very useful criterion for er-
godicity and shows for the first time the announced duality between properties of
the transformation ϕ : X Ñ X and the induced operator Tϕ : Lppµq Ñ Lppµq.
III.4 Proposition:
For an MDS pX, Σ, µ; ϕq the following statements are equivalent:

(a) pX, Σ, µ; ϕq is ergodic.
(b) The fixed space F :� tf P LppX, Σ, µq : Tϕf � fu of Tϕ is one-dimensional, or:

1 is a simple eigenvalue of Tϕ P Lppµq for 1 ¤ p ¤ 8.
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Proof. We observe, first, that the constant functions are always contained in F ,
hence 1 is an eigenvalue of Tϕ. Moreover, we shall see that the proof does not
depend on the choice of p.

(b) ñ (a): If A P Σ is ϕ-invariant, then 1A P F and dim F ¥ 2.

(a) ñ (b): For any f P F and any c P R the set

rf ¡ cs :� tx P X : fpxq ¡ cu
is ϕ invariant, and hence trivial. Let c0 :� suptc P R : µrf ¡ cs � 1u. Then for
c   c0 we have µrf ¤ cs � 0, and therefore µrf   c0s � 0. For c ¡ c0 we have
µrf ¡ cs � 1, hence µrf ¡ cs � 0, and therefore µrf ¡ c0s � 0, too. This implies
f � c0 a.e..

III.5 Examples:

(i) The rotation pΓ,B,m; ϕaq is ergodic, iff a P Γ is not a root of unity: If an � 1
for some n P N, then 1 and f : z Ñ zn are in Γ, and so ϕa is not ergodic. On
the other hand, if an � 1 for all n P N, assume Tϕaf � f for some f P L2pmq.
Since the functions fn, n P Z, with fpzq � zn form an orthonormal basis in
L2pµq we obtain

f � 8̧

n��8
bnfn and Tϕaf � 8̧

n��8
bnTϕafn �

8̧

n��8
bnanfn.

The comparison of the coefficients yields bnpan � 1q � 0 for all n P Z, hence
bn � 0 for all n P N, i.e. f is constant.

(ii) The Bernoulli shift Bpp0, . . . , pk�1q is ergodic: Let A P pΣ be τ -invariant with
0   pµpAq and let ε ¡ 0. By definition of the product σ-algebra, there exists
B P pΣ depending only on a finite number of coordinates such that pµpA4Bq  
ε, and therefore |pµpAq � pµpBq|   ε. Choose n P N large enough such that
C :� τnB depends on different coordinates than B. Since µ is the product
measure, we obtain pµpB X Cq � pµpBq � pµpCq � pµpBq2, and τpAq � A givespµpA4Bq � pµpτnpA4Bqq � pµpA4Cq. We have A4pB X Cq � pA4Bq YpA4Cq and therefore pµpA4pB X Cqq   2ε. This implies

|pµpAq � pµpAq2| ¤ |pµpAq � pµpB X Cq| � |pµpB X Cq � pµpAq2|
¤ pµpA4pB X Cqq � |pµpBq2 � pµpAq2|
� pµpA4pB X Cqq � |pµpBq � pµpAq| � |pµpBq � pµpAq|
¤ 4ε, which proves pµpAq � pµpAq2 � 1.

In the last third of this lecture we introduce the concept of “irreducible” TDSs.
Formally, this will be done in complete analogy to III.3, but due to the fact that in
general the complement of a closed ϕ-invariant set is not closed, the result will be
quite different.

III.6 Definition:
A TDS pX; ϕq is called minimal, if there are no non-trivial ϕ-invariant closed sets
A � X, i.e. ϕpAq � A, A closed, implies A � H or A � X.
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Again, “irreducible” seems to be the more adequate term (see III.D.11) but
“minimal” is the term used by the topological dynamics specialists. It is motivated
by property (ii) in the following proposition.

III.7 Proposition:

(i) If pX; ϕq is minimal, then the fixed space F :� tf P CpXq : Tϕf � fu is
one-dimensional.

(ii) If pX; ϕq is a TDS, then there exists a non-empty ϕ-invariant, closed subset
Y of X such that pY ;ϕq is minimal.

Proof. We observe that the orbit tϕnpxq : n P Zu of any point x P X and also its
closure are ϕ-invariant sets. Therefore, pX; ϕq is minimal iff the orbit of every point
x P X is dense in X.

(i) For f P F we obtain fpxq � fpϕnpxqq for all x P X and n P Z. If pX; ϕq is
minimal, the continuity of f implies f � constant.

(ii) The proof of this assertion is a nice, but standard application of Zorn’s lemma
and the finite intersection property of compact spaces.

III.8 Examples:

(i) Take X � r0, 1s and ϕpxq � x2. Then pX; ϕq is not minimal (since ϕp0q � 0)
but dim F � 1

(ii) A property analogous to (III.7.ii) is not valid for MDSs: in pr0, 1s,B,m; idq
there exists no “minimal” invariant subset with positive measure.

(iii) The rotation pΓ;ϕaq is minimal iff P Γ is not a root of unity: If an0 � 1
for some n0 P N, then tz P Γ : zn0 � 1u is closed and ϕ-invariant. For the
other implication, we show that the orbit of every point in Γ is dense. To
do this we need only prove that t1, a, a2, . . . u is dense in Γ. Choose ε ¡ 0.
Since by assumption an1 � an2 for n1 � n2, there exist l   k P N such that
0   |al � ak|   ε. 0   |al � ak| � |1 � ak�l| � |apk�lqn � apk�lqpn�1q|   ε for
all n P N. Since the set of “segments” tpapk�lqn, apk�lqpn�1qq : n P Nu covers
Γ, we proved that there is at least one power of a in every ε-segment of Γ.

(iv) The shift τ on t0, 1, . . . , k � 1u is not minimal, since τpxq � x for x �p. . . , 0, 0, 0, . . . q.
We state once more that ergodicity and minimality are the most fundamental prop-
erties of our measure-theoretical or topological dynamical systems. On the other
hand they gave us the first opportunity to demonstrate how dynamical properties
of a map ϕ : X Ñ X are reflected by (spectral) properties of the induced linear
operator Tϕ (see III.4 and III.7.i). In particular, it can be expected that the set
PσpTϕq of all eigenvalues of Tϕ has great significance in ergodic theory (see Lec-
tures VIII and IX). Here we show only the effect of ergodicity or minimality on the
structure of the point spectrum PσpTϕq.
III.9 Proposition:
Let pX; ϕq be a minimal TDS (resp. pX, Σ, µ; ϕq an ergodic MDS). Then the point
spectrum PσpTϕq of the induced operator Tϕ on CpXq (resp. LppX, Σ, µq) is a
subgroup of Γ, and each eigenvalue is simple.
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Proof. Since Tϕ is a bijective isometry the spectrum of Tϕ is contained in Γ. Let
Tϕf � λf , }f} � 1 � |λ|. Since Tϕ is a lattice homomorphism we conclude

Tϕ|f | � |Tϕf | � |λf | � |λ| � |f | � |f |,
and hence |f | � 1 by (III.7.i), resp. (III.4), i.e. every normalized eigenfunction is
unimodular and the product of two such eigenfunctions is non-zero. Since Tϕ is
also an algebra homomorphism (on L8pXq, resp. CpXq) we conclude from Tϕf �
λ1f � 0 and Tϕg � λ2g � 0 that

Tϕpf � g�1q � Tϕf � Tϕg�1 � λ1 � λ�1
2 pf � g�1q � 0

which shows that PσpTϕq is a subgroup of Γ. If λ1 � λ2, it follows Tϕpf � g�1q �
f � g�1 and, again by the one-dimensionality of the fixed space, f � g�1 � c � 1 or
f � c � g, i.e. each eigenvalue is simple.

III.D Discussion

III.D.1. The “original” Poincaré theorem:
Henri Poincaré ([1890], p. 69) formulated what later on was called the recurrence
theorem:

“Théorème I. Supposons que le point P reste à distance finie, et que
le volume

³
dx1 dx2 dx3 soit un invariant intégral; si l’on considère

une région r0 quelconque, quelqe petite que soit cette région, il y
aura des trajectoires qui la traverseront une infinité de fois.”

In the corollary to this theorem he mentioned some kind of probability distribution
for the trajectories:

“Corollaire. Il résulte de ce qui précède qu’il existe une infinité de
trajectoires qui traversent une infinité de fois la région r0; mais il
peut en exister d’autres qui ne traversent cette région qu’un nom-
bre fini de fois. Je me propose maintenant d’expliquer pourquoi
oes dernières trajectoires peuvent être regardées oomme exception-
nelles.”

III.D.2. Recurrence and the second law of thermodynamics:
As we explained in Lecture I the time evolution of physical “states” is adequately
described in the language of MDS and therefore “states” are “recurrent”. This (and
the picture following (III.2)) seems to be in contradiction with the second law of
thermodynamics which says that entropy can only increase, if it changes at all, and
thus we can never come back to a state of entropy h, once we have reached a state
of entropy higher than h. One explanation lies in the fact that the second law is an
empirical law concerning a quantity, called entropy, that can only be determined
through measurements that require time averaging (in the range from milliseconds
to seconds). In mathematical models of “micro”-dynamics, which were the starting
point of ergodic theory, such time averages should be roughly constant (and equal
to the space mean by the ergodic hypothesis). Therefore entropy should be constant
for dynamical systems (like the constant defined in Lecture XII, although at least
to us it is unclear whether the two numbers, the Kolmogoroff-Sinai entropy and the
physical entropy can be identified or compared in such a model). In this case there
is no contradiction to Poincaré’s theorem, because entropy does not really depend
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on the (“micro”-)state x.

The second law of thermodynamics applies to changes in the underlying physical
“micro”-dynamics, i.e. in the dynamical system or in the mapping ϕ. Such changes
can occur for example if boundary conditions are changed by the experimenter or
engineer; they are described on a much coarser time scale, and as a matter of fact,
they can only lead in a certain direction, namely toward higher entropy.

Another way of turning this argument is the following: The thermodynamical
(equilibrium) entropy is a quantity that is based on thermodynamical measure-
ments, which always measure time averages in the range from milliseconds to sec-
onds. In particular, such an unusual momentary state as in the picture following
(III.2) cannot be measured thermodynamically, in fact the ergodic hypothesis states
that we shall usually measure a time average which is close to the “space mean”.
Therefore a thermodynamical measurement of the number of atoms (i.e. the “pres-
sure”) in the left chamber will almost always give a result close to 500. In some
branches of thermodynamics (“non-equilibrium” thermodynamics), however, a vari-
able epxq is associated with micro states x P X, which is also interpreted as the
“entropy” of x, but is not constant on X. In this case Poincaré’s theorem shows
that the second law for this variable e cannot be strictly true, but still it is argued
that a big decrease of e is very improbable. For example, we can try to capture the
momentary state of the gas in the box, by quickly inserting a separating wall into
the box at some arbitrary moment (chosen at random). Then the thermodynam-
ical calculations of the invariant measure on the state space tell us, that we have
a chance of 2�1000 of catching the gas in a position with all 1000 atoms in the left
half of the box (low “entropy”), and a chance of 27.2% of having 495 to 505 atoms
in the left half of the box (high “entropy”).

III.D.3. Counterexamples:
The recurrence theorem (III.2) is not valid without the assumption of finite measure
spaces or measure-preserving transformations:

(i) Take X � R and the Lebesgue measure m. Then the shift

τ : x ÞÑ x� 1

on X is bi-measure-preserving, but no point of A :� r0, 1q is recurrent to A.
(ii) The transformation

ϕ : x Ñ x2

on X � r0, 1s is bi-measurable, but not measure-preserving for the Lebesgue
measure m. Clearly, no point of A :� r 12 , 2

3 s is recurrent to A.

III.D.4. Recurrence in random literature:
A usual typewriter has about 90 keys. If these keys are typed at random, what
is the probability to type for example this book? Let us say, this book has N
letters including blanks. Then the probability of typing it with N random letters
is p � 90�N . The Bernoulli shift Bp 1

90 , . . . , 1
90 q is an MDS p pX, pΣ, pµ; τq whose state

space consists of sequences pxkqkPZ which can be regarded as the result of infinite
random typing. What is the probability, that such a sequence contains this book,
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i.e. the sequence R1, . . . , RN of letters? Frompµrthere exists k P Z such that xk�1 � R1, . . . , xk�N � RN s
� 1� pµrfor every k P Z there exists i P t1, . . . , Nu such that xk�i � Ris
¥ 1� n¹

k�1

pµrthere exists i P t1, . . . , Nu such that xk�i � Ris
� 1� p1� pqn for every n P N

we conclude that this probability is 1. Now consider A :� rx1 � R1, . . . , xN � RN s
having pµpAq � 0. We have just shown that for almost every x P pX there is a num-
ber k such that τkpxq P A for the shift τ . Poincaré’s theorem implies that there are
even infinitely many such numbers, i.e. almost every sequence contains this book
infinitely often!

By Kac’s theorem (Kac [1947], Petersen [1983]) and the ergodicity of Bp 1
90 , . . . 1

90 q
the average distance between two occurrences of this book in random text is
1
p � 90N digits. The fact that this number is very large, may help to understand
the strange phenomenon depicted in (III.2)

III.D.5. Invariant sets:
The transformations ϕ : X Ñ X which we are considering in these lectures are bi-
jective. Therefore it is natural to call a subset A � X ϕ-invariant if ϕpAq � A and
ϕ�1pAq � A, i.e. ϕpAq � A. With this definition, a closed ϕ-invariant set A � X
in a TDS pX;ϕq always leads to the restricted TDS pA; ϕ|Aq, while pr0, 1s; ϕq,
ϕpxq :� x2 and A � r0, 1

2 s gives an example such that ϕpAq � A but ϕ|A is not a
homeomorphism of A.

For MDSs pX, Σ, µ; ϕq the situation is even simpler: ϕpAq � A implies A �
ϕ�1pAq and µpAq � µpϕ�1pAqq since ϕ is measure-preserving. Therefore A �
ϕ�1pAq and ϕpAq � A µ-a.e..

In agreement with the definition above we define the orbit of a point x P X astϕkpxq : k P Zu. If pX; ϕq is a TDS, the smallest closed invariant set containing a
point x P X is clearly the “closed orbit” tϕkpxq : k P Zu. However, the closed orbit
is, in general, not a minimal set: For example consider the one point compactifica-
tion of Z

X :� ZY t8u
and the shift τ :

#
x ÞÑ x� 1 if x P Z
8 ÞÑ 8 .

Then tτkp0q : k P Zu � X is not minimal since τp8q � 8.
In many cases, however, the closed orbit is minimal as can be seen in the following.

Lemma: Let pX; ϕq be a TDS, where X is a metric space (with metric d) and
assume that X � tϕspaq : s P Zu for some a P X. If for every ε ¡ 0 there exists
k P N with

dpa, ϕksaq   ε for all s P Z,

then pX; ϕq is minimal.
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Proof. It suffices to show that a P tϕspxq : s P Zu for every x P X. Let be x P X,
ε ¡ 0, and choose k P N such that

(i) dpa, ϕksaq   ε for all s P Z.
Since the family of mappings tϕ0, ϕ1, . . . , ϕku is equicontinuous at x there is
δ ¡ 0 such that

(ii) dpϕtx, ϕtyq   ε if t P t0, . . . , ku and dpx, yq   δ. The orbit of a is dense in X.
Therefore, we find r P Z with

(iii) dpx, ϕraq   δ and by (i) a suitable t P t0, . . . , ku with
(iv) dpϕt�ra, aq   ε.

Combining (ii), (iii) and (iv) we conclude that

dpϕtx, aq ¤ dpϕtx, ϕtpϕraqq � dpϕt�ra, aq ¤ 2ε.

Remark: Minimality in metric spaces is equivalently characterized by a property
weaker than that given above (see Jacobs [1960], 5.1.3.).

III.D.6. Ergodicity implies “time mean equal space mean”:
The physicists wanted to replace the time mean

lim
nÑ8

1
n

n�1̧

i�0

f � ϕipxq
of an “observable” ϕ in the “state” x by the space mean»

X

f dµ (see Lecture I),

i.e. the above limit has to be equal the constant function p³
X

f dµq � 1. Obviously
the time mean is a ϕ-invariant function, and we conclude by (III.4) that “time mean
equal space mean” holds for every observable f (at least: f P Lppµq) if and only
if (!) the dynamical system is ergodic. In this way the original problem of ergodic
theory seems to be solved, but there still remains the task for the mathematician to
prove the existence of the above limit (see Lecture IV and V). Even more important
(and more difficult) is the problem of finding physical systems and their mathemat-
ical models, which are ergodic. The statement of Birkhoff-Koopmann [1932] “the
outstanding unsolved problem in ergodic theory is the question of the truth or fal-
sity of metrical transitivity (= ergodicity) for general Hamiltonian systems” is still
valid, even if important contributions have been made for the so-called “billiard
gas” by Sinai [1963] and Gallavotti-Ornstein [1974] (see Gallavotti [1975]).

III.D.7. Decomposition into ergodic components:
As indicated it is a mathematical principle to decompose an object into “irre-
ducible” components and then to investigate these components. For an MDS this
is possible (with “ergodic” for “irreducible”). In fact, such a decomposition is based
on the geometrical principle of expressing a point of a (compact) convex set as a
convex sum of extreme points (see books on “Choquet theory”, e.g. Phelps [1966]
or Alfsen [1971]), but the technical difficulties, due to the existence of null sets, are
considerable, and become apparent in the following example:
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Consider the MDS pX,B,m;ϕaq where X :� tz P C : |z| ¤ 1u, B the Borel algebra,
m the Lebesgue measure mpXq � 1 and ϕa the rotation

ϕapzq � a � z
for some a P C with |a| � 1, an � 1 for all n P N. Its ergodic “components” are the
circles Xr :� tz P C : |z| � ru for 0 ¤ r ¤ 1 and pX,B, m;ϕaq is “determined” by
these ergodic components. For more information we refer to von Neumann [1932]
or Rohlin [1966].

III.D.8. One-dimensionality of the fixed space:
Ergodicity is characterized by the one-dimensionality of the fixed space (in the
appropriate function space) while minimality is not (III.4 and III.8.1). The fixed
space of the induced operator Tϕ in CpXq is already one-dimensional if there is
at least one point x P X having dense orbit tϕnpxq : n P Zu in X (see III.7,
Proof). This property of a TDS, called “topological transitivity” or “topological
ergodicity”, is another topological analogue of ergodicity as becomes evident from
the following characterizations (see Walters [1975] p. 22 and p. 117):
1. For an MDS pX, Σ, µ; ϕqthe following are equivalent:

a. ϕ is ergodic.
b. For all A,B P Σ, µpAq � 0 � µpBq, there is k P Z such that |µpϕkAXBq ¡ 0.

2. For a TDS pX;ϕq, X metric, the following assertions are equivalent:
a. ϕ is topologically ergodic.
b. For all A,B open, A � H � B there is k P Z such that ϕkAXB � H

But even topological transitivity, although weaker than minimality, is not charac-
terized by the fact that the fixed space is one-dimensional in CpXq, see (III.8).i.
The reason is that Tϕ in CpXq lacks a certain convergence property which is au-
tomatically satisfied in LppX, Σ, µq (see VI.7 and IV.8; for more information see
IX.D.7.

III.D.9. Ergodic and minimal rotations on the n-torus:
The rotation

ϕa : z ÞÑ a � z
on the n-dimensional torus Γn with a � pa1, . . . , anq P Γn is is ergodic (minimal) if
and only if ta1, . . . , anu are linearly independent in the Z-module Γ

Proof. (i) In the measure-theoretical case use the n-dimensional Fourier expan-
sion and argue as in (III.5.i).

(ii) In the topological case we argue as in (III.8.iii) observing that for an a �pa1, . . . , anq P Γn the set tak : k P Zu is dense in Γn iff ta, . . . , anu is linearly
independent in the Z-module Γ (see D.8).

III.D.10. Ergodic vs. minimal:
Let pX;ϕq be a TDS and µ a ϕ-invariant probability measure on X (see also App. S).
Then pX,B, µ; ϕq is an MDS for the Borel algebra B. In this situation, is it possible
that if is ergodic but not minimal, or vice versa? The positive answer to the first
part or our question is given by the Bernoulli shift, see (III.5.ii) and (III.8.iv). The
construction of a dynamical system which is minimal but not ergodic is much more
difficult and needs results of Lecture IV. We come back to this problem in IV.D.9.
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III.D.11. Irreducible operators on Banach lattices:
Let T be a positive operator on some Banach lattice E. It is called irreducible
if it leaves no non-trivial closed lattice ideal invariant. If E � CpXq, resp. E �
L1pX, σ, µq, every closed lattice ideal is of the form

IA :�  
f P E : fpAq � t0u(

where A � X is closed, resp. measurable, (Schaefer [1974], p. 157). Therefore, it
is not difficult to see that an induced operator Tϕ on CpXq, resp. LppX, Σ, µq is
irreducible if and only if pX; ϕq is minimal, resp. if pX, Σ, µ;ϕq ergodic. In contrast
to minimal TDSs the ergodicity of an MDS pX, Σ, µ; ϕq is characterized by the one-
dimensionality of the Tϕ-fixed space in LppX, Σ, µq, 1 ¤ p   8, (see III.4). The
reason for this is the fact that the induced operators are mean ergodic on Lppµq
but not on CpXq (see Lecture IV). More generally, the following holds (see Schaefer
[1974], III.8.5).

Proposition: Let T be a positive operator on a Banach lattice E and assume that
T is mean ergodic with non-trivial fixed space F . The following are equivalent:
(a) T is irreducible.
(b) F � xuy and F 1 � xµy for some quasi-interior point u P E� and a strictly

positive linear form µ P E1�.

If E is finite-dimensional, we obtain the classical concept of irreducible (= inde-
composable) matrices (see IV.D.7 and Schaefer [1974], I.6).

Example: The matrix ���p0 � � � � � � � � � pk�1

...
...

p0 � � � � � � � � � pk�1

��
of (II.6), Exercise is irreducible whereas the Bernoulli shift Bpp0, . . . , pk�1q is er-
godic (see (III.5.ii)). This gives the impression that irreducibility is preserved under
dilation (see App. U) at least in this example. In fact, this turns out to be true
(App. U), and in particular in (IV.D.8) we shall show that any Markov shift is
ergodic iff the corresponding matrix is irreducible. Frobenius discovered in 1912
that the point spectrum of irreducible positive matrices has nice symmetries. The
same is true for operators Tϕ, as shown in (III.9).

This result has been considerably generalized to irreducible positive operators
on arbitrary Banach lattices. We refer to Schaefer [1974], V.5.2 for a complete
treatment and quote the following theorem.

Theorem (Lotz, 1968): Let T be a positive irreducible contraction on some
Banach lattice E. Then PσpRqXΓ is a subgroup of Γ or empty, and every eigenvalue
in Γ is simple.

References: Lotz [1968], Schaefer [1967/68], Schaefer [1974].

III.D.12. The origin of the word “Ergodic Theory”:
In the last decades of the 19th century mathematicians and physicists endeavoured
to explain thermodynamical phenomena by mechanical models and tried to prove
the laws of thermodynamics be mechanical principles or, at least, to discover close
analogies between the two. The Hungarian M.C. Szily [1872] wrote:
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“The history of the development of modern physics speaks decid-
edly in favour of the view that only those theories which are based
on mechanical principles are capable of affording a satisfactory ex-
planation of the phenomena.”

Those efforts were undertaken particularly in connection with the second law of
thermodynamics; Szily [1876] even claimed to have deduced it from the first,
whereas a few years earlier he had declared:

“What in thermodynamics we call the second proposition, is in
dynamics no other than Hamilton’s principle, the identical principle
which has already found manifold applications in several branches
of mathematical physics.”

(see Szily [1872]; see also the subsequent discussion in Clausius [1872] and Szily
[1873].)

In developing the Mechanical Theory of Heat three fundamentally different hy-
potheses were made; besides the hypothesis of the stationary or quasi-periodic
motions (of R. Clausius and Szily) and the hypothesis of monocyclic systems (of
H. von Helmholtz, cf. Bryan-Larmor [1892]), the latest investigations at that time
concerned considerations which were based on a very large number of molecules in
a gas and which established the later Kinetic Theory of Gases. This was the statis-
tical hypothesis of L. Boltzmann, J.B. Maxwell, P.G. Tait and W. Thomson, and
its fundamental theorem was the equipartition theorem of Maxwell and Boltzmann:
When a system of molecules has attained a stationary state the time-average of the
kinetic energy is equally distributed over the different degrees of freedom of the
system. Based on this theorem there are some proofs of the second law of thermo-
dynamics (Burbury [1876], Boltzmann [1887]), but which was the exact hypothesis
for the equipartition theorem itself? In Maxwell [1879] we find the answer:

“The only assumption which is necessary for the direct proof (of
the equipartition theorem) is that the system, if left to itself in
its actual state of motion, will, sooner or later, pass through every
phase which is consistent with the equation of energy.”

Boltzmann [1871], too, made use of a similar hypothesis:

“Von den zuletzt entwickelten Gleichungen können wir unter einer
Hypothese, deren Anwendbarkeit auf warme Körper mir nicht un-
wahrscheinlich scheint, direkt zum Wärmegleichgewicht mehratom-
iger Gasmoleküle je noch allgemeiner zum Wärmegleichgewicht eines
beliebigen mit einer Gasmasse in Berührung stehenden Körpers
gelangen. Die große Unregelmäßigkeit der Wärmebewegung und
die Mannigfaltigkeit der Kräfte, welche von außen auf die Körper
wirken, macht es wahrscheinlich, daß die Atoms derselben vermöge
der Bewegung, die wir Wärme nennen, alle möglichen mit der Gle-
ichung der lebendigen Kraft vereinbare Positionen und Geschwindig-
keiten durchlaufen, daß wir also die zuletzt entwickelten Gleichun-
gen auf die Koordinaten und die Geschwindigkeitskomponenten der
Atome warmer Körper anwenden können.”

Sixteen years later, Boltzmann mentioned in [1887]
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“... (Ih habe für derartige Inbegriffe von Systemen den Namen
Ergoden vorgeschlagen.)...”

This may have induced P. and T. Ehrenfest to create the notion of “Ergodic Theory”
by writing in “Begriffliche Grundlagen der statistischen Auffassung” [1911]:

“... haben Boltzmann und Maxwell eine Klasse von mechanischen
Systemen durch die folgende Forderung definiert:
Die einzelne ungestörte Bewegung des Systems führt bei unbegren-
zter Fortsetzung schließlich durch jeden Phasenpunkt hindurch, der
mit der mitgegebenen Totalenergie verträglich ist. – Ein mecha-
nisches System, das diese Forderung erfüllt, nennt Boltzmann ein
ergodisches System.“

The notion “ergodic” was explained by them in a footnote:

“ ἔργον = Energie, ὁδός= Weg : Die G-Bahn geht durch alle Punkte
der Energiefläche. Diese Bezeichnung gebraucht Boltzmann das
erste Mai in der Arbeit [15] (1886) ” (here Boltzmann [1887])

But this etymological explanation seems to be incorrect as we will see later. The hy-
pothesis quoted above, i.e. that the gas models are ergodic systems, they called the
“Ergodic Hypothesis”. In the sequel they doubted the existence of ergodic systems,
i.e. that their definition does not contradict itself. Actually, only few years later
A. Rosenthal and M. Plancherel proved independently the impossibility of systems
that are ergodic in this sense (cf. Brush [1971]). Thus, “Ergodic Theory” as a theory
of ergodic systems hardly survived its definition. Nevertheless, from the explication
of the “Ergodic Hypothesis” and its final negation, “Ergodic Theory” arose as a
new domain of mathematical research (cf. Brush [1971], Birkhoff-Koopmann [1932].

But, P. and T. Ehrenfest were mistaken when they thought that Boltzmann used
the notion “Ergodic” and “Ergodic Systems” in Boltzmann [1887] for the first time.
In 1884 he had already defined the notion “Ergode” as a special type of “Monode”.
In his article (Boltzmann [1885]) first of all he wrote:

“Ich möchte mir erlauben, Systeme, deren Bewegung in diesem
Sinne stationär ist, als monodische Oder kürzer als Monoden zu
bezeichnen. (Mit dem Namen stationär wurde von Herrn Clausius
jede Bewegung bezeichnet, wobei Koordinaten und Geschwindigkeiten
immer zwischen endlichen Grenzen eingeschlossen bleiben). Sie
sollen dadurch charakterisiert sein, daß die in jedem Ptmkte der-
selben herrschende Bewegung unverändert fortdauert, also nicht
Funktion der Zeit ist, solange die äußeren Kräfte unverändert bleiben,
und daß auch in keinem Punkte und keiner Flc̈he derselben Masse
oder lebendige Kraft oder sonst ein Agens ein- oder austritt.”

In a modern language a “Monode” is a system only moving in a finite region of
phase space described by a dynamic system of differential equations; a simple exam-
ple is a mathematical pendulum. From Boltzmann’s definition we can understand
the name: μόνος means “unique”, “Monode” probably comes from μονώδης which
is composed of μόνο–ώδης where the suffix –ώδης means “–like”.



25

Having specified some different kinds of “Monoden” as “Orthoden” and “Holo-
den”, Boltzmann turned towards collections (ensembles) of systems which were all
of the same nature, totally independent of each other and each, of them fulfilling
a number of equations ϕ1 � a1, . . . , ϕk � ak. Of special interest to him were those
collections of systems fulfilling only one equation ϕ � a concerning the energy of
all systems in the collection.

“... so wollen wir den Inbegriff aller N Systeme als eine Monode
bezeichnen, welche durch die Gleichungen ϕ1 � a1, . . . beschränkt
ist ... Monoden, welche nur durch die Gleichung der lebendigen
Kraft beschränkt sind, will ich als Ergoden, solche, welche außer
dieser Gleichung auch noch durch andere beschränkt sind, als Suber-
goden bezeichnen.... Für Ergoden existiert also nur ein ϕ, welches
gleich der für alle Systeme gleichen und während der Bewegung
jedes Systems konstanten Energie eines Systems χ � ψ � pφ�Lq

N
ist”.

(Boltzmann [1885]; χ, φ mean the potential energy, ψ, L the kinetic energy of one
system, of the collection of N systems, respectively.) The last sentence of that
quotation helps us to understand the name “Ergode” in the right way: The word
ἔργον = “work, energy” is used, but in a sense different from that presumed by the
Ehrenfests who also did not mention Boltzmann’s article [1885] in their bibliogra-
phy [1911].

Boltzmann also had knowledge of “Monoden” fulfilling the “Ergodic Hypothe-
sis” of the Ehrenfests. In the fourth paragraph of Boltzmann [1885] we read in a
footnote:

“Jedesmal, wenn jedes einzelne System der Monode im Verlaufe der
Zeit alle an den verschiedenen Systemen gleichzeitig nebeneinander
vorkommenden Zustände durchläuft, kann an Stelle der Monode ein
einziges System gesetzt werden.... Für eine solche Monode wurde
schon früher die Bezeichnung “isodisch” vorgeschlagen”

In summary an “Ergode” is a special kind of “Monode”, namely one which is de-
termined by “ ἔργον” = “energy” or “work”, and the word “Monode” stems from
μόνος = “one” or “unique” and the suffix –ώδης = “–like” or “–full”. Therefore a
“Monode” is literally “one-like” i.e. atomary or indecomposable, which is just the
modern meaning of ergodic. Taken literally, however, the word “Ergode” means
“energy-like” or “work-full”, which brings us back to our first etymological answer
in Lecture I:

“ difficult ”!

References: Boltzmann [1885], [1887], Brush [1971], Ehrenfest [1911]

P.S. The above section originated from a source study by M. Mathieu. The Ehren-
fests’ explanation of the word “ergodic” is still advocated by A. LoBello:

The etymology of the word ergodic, in: Conference on modern
Analysis and Probability, New Haven 1982, Contempt.Math. 26,
Amer. Math. Soc. Providence R.I., 1984, p.249.


