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II. Dynamical Systems

Many of the answers presented in Lecture I indicate that ergodic theory deals
with pairs pX,ϕq where X is a set whose points represent the “states” of a physical
system while ϕ is a mapping from X into X describing the change of states after
one time unit. The first step towards a mathematical theory consists in finding
out which abstract properties of the physical state spaces will be essential. It is
evident that an “ergodic theory” based only on set-theoretical assumptions is of
little interest. Therefore we present three different mathematical structures which
can be imposed on the state spaceX and the mapping ϕ in order to yield “dynamical
systems” that are interesting from the mathematical point of view. The parallel
development of the corresponding three “ergodic theories” and the investigation of
their mutual interaction will be one of the characteristics of the following lectures.

II.1 Definition:

(i) pX,Σ, µ;ϕq is a measure-theoretical dynamical system (briefly: MDS) if pX,Σ, µq
is a probability space and ϕ : X Ñ X is a bi-measure-preserving transforma-
tion.

(ii) pX;ϕq is a topological dynamical system (TDS) if X is a compact space and
ϕ : X Ñ X is homeomorphism.

(iii) pE;T q is a functional-analytic dynamical system (FDS) if E is a Banach space
and T : E Ñ E is a bounded linear operator.

Remarks:

1. The term “bi-measure-preserving” for the transformation ϕ : X Ñ X in (i) is
to be understood in the following sense: There exists a subset X0 of X with
µpX0q � 1 such that the restriction ϕ0 : X0 Ñ X0 of ϕ is bijective, and both ϕ0

and its inverse are measurable and measure-preserving for the induced σ-algebra
Σ0 :� tAXX0 : A P Σu.

2. If ϕ is bi-measure-preserving with respect to µ, we call µ a ϕ-invariant measure.
3. As we shall see in (II.4) every MDS and TDS leads to an FDS in a canonical

way. Thus a theory of FDSs can be regarded as a joint generalization of the
topological theory of TDSs and the probabilistic theory of MDSs. In most of
the following chapters we will either start from or aim for a formulation of the
main theorem(s) in the language of FDSs.

4. DDSs (“differentiable dynamical systems”) will not be investigated in these lec-
tures (see Bowen [1975], Smale [1967], [1980]).

Before proving any results we present in this lecture the fundamental (types of)
examples of dynamical systems which will frequently reappear in the ensuing text.
The reader is invited to apply systematically every definition and result to at least
some of these examples.

II.2. Rotations:

(i) Let Γ � tz P C : |z| � 1u be the unit circle, Σ its Borel algebra, and m the
normalized Lebesgue measure on Γ. Choose an a P Γ and define

ϕapzq :� a � z for all z P Γ.

Clearly, pΓ;ϕaq is a TDS, and pΓ,B,m;ϕaq an MDS.
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(ii) A more abstract version of the above example is the following: Take a compact
group G with Borel algebra B and normalized Haar measure m. Choose h P G
and define the (left)rotation

ϕhpgq :� h � g for all g P G.
Again, pG;ϕhq is a TDS, and pG,B,m;ϕhq an MDS.

II.3. Shifts:
(i) “Dough-kneading” leads to the following bi-measure-preserving transforma-

tion

ÝÑ ÝÑ

or in a more precise form: if X :� r0, 1s2 , B the Borel algebra on X, m the
Lebesgue measure, and

ϕpx, yq :�
#
p2x, y2 q for 0 ¤ x ¤ 1

2 ,

p2x� 1, py�1q
2 for 1

2   x ¤ 1,

we obtain an MDS, but no TDS for the natural topology on X.
(ii) “Coin-throwing” may also be described in the language of dynamical systems:

Assume that somebody throws a dime once a day from eternity to eternity.
An adequate mathematical description of such an “experiment” is a point

x � pxnqnPZ

in the space pX :� t0, 1uZ, which is compact for the product topology.

Tomorrow, the point pxnq � p. . . . . . , x�1,x0, x1, x2, . . . q
Ù

will be pxn�1q � p. . . , x�1, x0,x1, x2, . . . . . . q
where the arrow points to the current outcome of the dime-throwing experi-
ment. Therefore, time evolution corresponds to the mapping

τ : pX Ñ pX, pxnqnPZ ÞÑ pxn�1qnPZ.

p pX; τq is a TDS, and τ is called the (left)shift on pX. Let us now introduce
a probability measure pµ on pX telling which events are probable and which
not. If we assume firstly, that this measure should be determined by its
values on the (measurable) rectangles in pX (see A.17), and secondly, that the
probability of the outcome should not change with time, we obtain that pµ is
a shift invariant probability measure on the product σ-algebra pΣ on pX, and
that p pX, pΣ, pµ; τq is an MDS.

On pX there are many τ -invariant probability measures, but in our concrete
case, it is reasonable to assume further that today’s outcome is independent
of all the previous results, and that the two possible results of “coin throwing”
have equal probabilities pp0q � pp1q � 1

2 . Then p pX, pΣ, pµq is the product space
pt0, 1u,Pt0, 1u, pqZ (see A.17).
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Exercise: Show that (i) and (ii) are the ”same” ! (Hint: see (VI.D.2))

(iii) Again we present an abstract version of the previous examples. Let pX,Σ, pq
be a probability space, where X :� t0, . . . , k�1u, k ¡ 1, is finite, Σ the power
set of X and p � pp0, . . . , pk�1q a probability measure on X.

Take pX � XZ, the product σ-algebra pΣ on X, the product measure pµ and
the shift τ on pX. Then we obtain an MDS p pX, pΣ, pµ; τq, called the Bernoulli
shift with distribution p and denoted by Bpp0, . . . , pk�1q.

II.4. Induced operators:
Very important examples of FDSs arise from TDSs and MDSs as follows:
(1) Let pX;ϕq be a TDS and let CpXq be the Banach space of all (real- or complex-
valued) continuous functions on X (see B.18). Define the “induced operator”

Tϕ : f ÞÑ f � ϕ for f P CpXq.
It is easy to see that Tϕ is an isometric linear operator on CpXq, and hence
pCpXq;Tϕq is an FDS. Moreover, we observe that Tϕ is a lattice isomorphism (see
C.5) and thus a positive operator on the Banach lattice CpXq (see C.1 and C.2).
On the other hand, if we consider the complex space CpXq as a C�-algebra (see
C.6 and C.7) it is clear that Tϕ is a �-algebra isomorphism (see C.8).

(2) Let pX,Σ, µ;ϕq be an MDS and consider the function spaces LppX,Σ, µq, 1 ¤
p ¤ 8 (see B.20). Define

Tϕ : f ÞÑ f � ϕ for f P LppX,Σ, µq,
or more precisely: Tϕf̌ :� ~f � ϕ where f̌ denotes the equivalence class in LppX,Σ, µq
corresponding to the function f . Again, the “induced operator” Tϕ is an isometric
(resp. unitary) linear operator on LppX,Σ, µq (resp. on L2pµq) since ϕ is measure-
preserving, and hence pLppX,Σ, µq;Tϕq is an FDS. As above, Tϕ is a lattice iso-
morphism if we consider LppX,Σ, µq as a Banach lattice (see C.1 and C.2). Finally,
the space L8pX,Σ, µq is a commutative C�-algebra and the induced operator Tϕ
on L8pX,Σ, µq is a �-algebra isomorphism.

Remark: Via the representation theorem of Gelfand-Neumark the case pL8pµq;Tϕq
in (2) may be reduced to the situation of (1) above (see ??). Therefore we are able
to switch from measure-theoretical to functional-analytic or to topological dynam-
ical systems. This flexibility is important in order to tackle a given problem with
the most adequate methods.

II.5. Stochastic matrices:
An FDS that is not induced by a TDS or an MDS can be found easily: Take
pE;T q, where E is Rk � Cpt0, . . . , k � 1uq and T is a k � k-matrix. We single
out a particular case or special interest in probability theory: Let T be stochastic,
i.e. T � paijq such that 0 ¤ aij and

°k�1
j�0 aij � 1 for i � 0, 1, . . . , k � 1. Then

pE;T q is an FDS and T1 � 1 where 1 � p1, ..., 1q. The matrix T has the following
interpretation in probability theory. We consider X � t0, 1, . . . , k�1u as the “state
space” of a certain system, and T as a description of time evolution of the states in
the following senses aij denotes the probability that the system moves from state
i to state j in one time step and is called the “transition probability” from i to
j. Thus T (resp. pE;T q) can be regarded as a “stochastic” version of a dynamical
system. Indeed, if every row and every column of T contains a 1 (and therefore
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only zeros in the other places), then the system is “deterministic” in the sense that
T is induced by a mapping (permutation) ϕ : X Ñ X (resp. pE;T q is induced by a
TDS pX,ϕq).

II.6. Markov shifts:
Let T : Rk Ñ Rk be a stochastic matrix paijq as in (II.5). Let µ � pp0, . . . , pk�1qJ
be an invariant probability vector, i.e.

pi ¥ 0,
k�1̧

i�0

pi � 1

and µ is invariant under the adjoint of T , i.e.
°k�1
i�0 aijpi � pj for all j (it is

well known and also follows from (IV.5) and (IV.4).e that there are such non-
trivial invariant vectors). We call µ the probability distribution at time 0, and the
probabilistic interpretation of the entries aij (see II.5) gives us a natural way of
defining probabilities onpX :�  

0, 1, . . . , k � 1uZ �  pxiqiPZ : xi P t0, 1, . . . , k � 1u(
with the product σ-algebra pΣ. For 0 ¤ l ¤ k�1, prrx0 � ls denotes the probability
that x P pX is in the state l at time 0. We define

prrx0 � ls :� pl

prrx0 � l, x1 � ms :� plalm

prrx0 � l0, x1 � l1, . . . , xt � lts :� pl0al0l1al1l2 � � � alt�1lt .

Moreover, since µ is invariant,

prrx1 � ls �
k�1̧

i�0

prrx0 � i, x1 � ls �
k�1̧

i�0

piail � pl � prrx0 � ls,

prrxt � ls � pl � prrx0 � ls, and finally

prrxs � l0, xs�1 � l1, . . . , xs�t � lts � pl0al0l1al1l2 � � � alt�1lt �(∗)

prrx0 � l0, x1 � l1, . . . , xt � lts for any choice of s P Z, t P N0

and l0, . . . , lt P t0, . . . , k � 1u
The equation (∗) gives a probability measure on each algebra Fm :� tA P pΣ :
A � �m

i��mrxi P Ais, Ai � Xu. By (A.17) this determines exactly one probability
measure µ on the product σ-algebra pΣ on pX. This measure µ is obviously invariant
under the shift

τ : pxnq ÞÑ pxn�1q
on pX. Therefore p pX, pΣ, pµ; τq is an MDS, called the Markov shift with invariant
distribution µ and transition matrix T .

Note that the examples (II.5) and (II.6), although they describe the same sto-
chastic process, are quite different, because the operator T of (II.5) is not induced
by a transformation of the state space t0, 1, . . . , k� 1u, whereas in (II.6) the shift τ
is defined on the state space t0, 1, . . . , k � 1uZ. We have refined (i.e. enlarged) the
state space of (II.5) to make the model “deterministic”.
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An analogous construction can be carried out in the infinite-dimensional case for
so-called Markov-operators (see App. U and X), or for transition probabilities (see
Bauer).

This construction is well-known in the theory of Markov processes; its functional-
analytic counterpart, the so-called dilation, will be presented in App. U.

Exercise: The Bernoulli shift Bpp0, . . . , pk�1q is a Markov shift. What is its in-
variant distribution and its transition matrix?

II.D Discussion

II.D.1. Non-bijective dynamical systems:
It is clear, that the Definitions (II.1.i,ii) make sense not only for bijective but also
for arbitrary measure-preserving, resp. continuous transformations, but we prefer
to sacrifice this greater generality for the sake of simplicity. Such non-bijective
transformations also induce FDSs by a procedure similar to that in (II.4). Examples
are the mappings

ϕ : r0, 1s Ñ r0, 1s defined by

ϕptq :�
#

2t for 0 ¤ t ¤ 1
2

2� 2t for 1
2   t ¤ 1

ϕptq :� 4tp1� tq.or

II.D.2. Banach algebras vs. Banach lattices:
The function spaces used in ergodic theory, i.e. CpXq and LppX,Σ, µq, are Banach
lattices and the induced operators Tϕ are lattice isomorphisms (see II.4 and App.C).
Therefore, the vector lattice structure seems to be adequate for a simultaneous
treatment of topological and measure-theoretical dynamical systems. If you prefer
Banach algebras and algebra isomorphisms, you have to consider the operators Tϕ
on the spaces CpXq and L8pX,Σ, µq.
II.D.3. Real vs. complex Banach spaces:
Since order structure and positivity makes sense only for real Banach spaces, one
could be inclined to study only spaces of real valued functions. But methods from
spectral theory play a central role in ergodic theory and require complex Banach
spaces. However, no real trouble is caused, since the complex Banach spaces CpXq
and LppX,Σ, µq decompose canonically into real and imaginary parts, and we re-
strict our attention to the real part whenever we use the order relation. Moreover,
the induced operator Tϕ (like any positive linear operator) is uniquely determined
by its restriction to this real part.

II.D.4. Null sets in pX,Σ, µq:
In the measure-theoretical case some technical problems may be caused by the sets
A P Σ with µpAq � 0. But in ergodic theory, it is customary (and reasonable, as
can be understood from the physicist’s answer in Lecture I: A is a set of “states”
having probability 0) to identify measurable sets which differ only by such a null
set. From now on, this will be done without explicit statement. For example, we
will say that a measurable function f is constant if

fpxq � c
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for all x P XzA, µpAq � 0.
The reader familiar with the “function” spaces LppX,Σ, µq realizes that we identify
the function with its equivalence class in Lppµq, but still keep the terminology
of functions. These subtleties should not disturb the beginner since no serious
mistakes can be made (see A.7 and B.20).

II.D.5. Which FDSs are TDSs?
We have seen in II.4 that to every TDS pX;ϕq canonically corresponds the FDS
pCpXq, Tϕq. Since this correspondence occurs frequently in our operator-theoretical
approach to ergodic theory, it is important to know which FDSs arise in this way.
More precisely: Which operators

T : CpXq Ñ CpXq
are induced by a homeomorphism

ϕ : X Ñ X

in the sense that T � Tϕ? A complete answer is given as follows.

Theorem: Consider the real Banach space CpXq and T P L pCpXqq. Then the
following assertions are equivalent:

(i) T is a lattice isomorphism satisfying T1 � 1.
(ii) T is an algebra isomorphism.
(iii) T � Tϕ for a (unique) homeomorphism ϕ on X.

Proof. Clearly, (iii) implies (i) and (ii).

(ii) ñ (iii): Let D :� tδx : x P Xu be the weak� compact set of all Dirac measures
on X. This coincides with the set of all normalized multiplicative linear forms
on CpXq, and from (C.9) it follows that X is homeomorphic to D. Since T is an
algebra isomorphism its adjoint T 1 maps D on D. The restriction of T 1 to D defines
a homeomorphism ϕ on X having the desired properties.

(i) ñ (iii): The proof requires some familarity with Banach lattices. We refer
to Schaefer 1974, III.9.1 for the details as well as for the “complex” case of the
theorem.

II.D.6. Which FDSs are MDSs?
Due to the existence of null sets (and null functions) the analogous problem in the
measure-theoretical context is more difficult: Which operators

T : LppX,Σ, µq Ñ LppX,Σ, µq
are induced by a bi-measure-preserving transformation

ϕ : X Ñ X

in the sense that T � Tϕ? Essentially, it turns out that the appropriate operators
are again the Banach lattice isomorphisms, but we will return to this problem in
Lecture VI.
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II.D.7. Discrete vs. continuous time:
Applying ϕ (or T ) in a dynamical system may be interpreted as movement from the
state x at time t to the state ϕpxq at time t�∆t. Therefore, repeated application
of ϕ means advancing in time with a discrete time scale in steps of ∆t. Intuitively
it is more realistic to consider a continuous time scale, and in our mathematical
model the transformation ϕ and the group homomorphism

n ÞÑ ϕn

defined on Z should be replaced by a continuous group of transformations, i.e. a
group homomorphism

t ÞÑ ϕt

from R into an appropriate set of transformations on X. Observe that the “com-
position rule”

ϕn�m � ϕn � ϕm, n,m P Z,
in the discrete model is replaced by

ϕt�s � ϕt � ϕs, t, s P R.

Adding some continuity or measurability assumptions one obtains “continuous dy-
namical systems” (e.g. Rohlin [1966], Chapt. II.). We prefer the simpler discrete
model, since we are mainly interested in the asymptotic behavior of the system as
t tends to infinity.

II.D.8. From a differential equation to a dynamical system:
In (II.D.7) we briefly discussed the problem “discrete vs.continuous time”. Clearly,
a “continuous dynamical system” pX; pϕtqtPRq gives rise to many “discrete dynam-
ical systems” pX;ϕq by setting ϕ :� ϕt for any t P R. We present here a short
introduction into the so-called “classical dynamical systems” which arise from dif-
ferential equations and yield continuous dynamical systems, also called “flows”.

Let X � Rn be a compact smooth manifold and fpxq a C1-vector field on X.
We consider the autonomous ordinary differential equation

(∗) 9x � dx
dt

� fpxq

(or in coordinates: 9xi � fipx1, . . . , xnq, i � 1, . . . , n). It is known that for every
x P X the equation (∗) has a unique solution ϕtpxq that satisfies ϕ0pxq � x. The
uniqueness of the solution implies the group property ϕt�s � ϕt �ϕs for all t, s P R,
and, in addition, the mapping

Φ : �R Ñ X

px, tq ÞÑ ϕtpxq
is continuous (see Nemyckii-Stepanov [1960]). Therefore, pX; pϕtqtPRq is a continu-
ous topological dynamical system.

II.D.9 Examples:
(i) Let Γ2 � R2{Z2 be the 2-dimensional torus and let

9x � 1
9y � α
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with α � 0. The flow pϕtq on Γ2 is given by

ϕt
��
x
y

�� � � px� tq mod 1
py � αtq mod 1



.

(ii) Take the space X � Γ2 as in (i) and define

9x � F
��
x
y

��
9y � α � F ��xy ��

where F is C1-function which is 1-periodic in each variable. Assume that F is
strictly positive on X. The solution curves of this motion agree with those of (i),
but the “speed” is changed.

For applications the above definition of a “continuous topological dynamical
system” has three disadvantages: first, the manifold X (the “state” space) is not
always compact, second, if X is not compact, in general not every-solution of (∗)
can be continued for all times t (e.g. the scalar equation 9x � x2), and finally, it
is often necessary to consider non-autonomous differential equations, i.e. the C1-
vector field f is defined on X � R where X is a manifold. All of these difficulties
can be overcome by generalizing the above definition (see Sell [1971].

Next, we want to consider “classical measure-theoretical dynamical systems”.
The problem of finding a ϕt-invariant measure, defined by a continuous density, is
solved by the Liouville theorem (see Nemyckii-Stepanov [1960]). We only present
a special case.

Many equations of classical mechanics can be written as a Hamiltonian system
of differential equations. Let q � pq1, . . . , qnq (coordinates) and p � pp1, . . . , pnq
(moments) be a coordinate system in R2n and Hpp, qq a C2-function which does
not depend on time explicitly. The equations

(∗∗)
9q � BH

Bp
9p � �BHBq

define a flow on R2n called the “Hamiltonian flow”. The divergence of the vector
field (∗∗) vanishes:

B
Bq

�BH
Bp

	
� B
Bp

�BH
Bq

	
� 0.

Therefore, the measure dq1 . . . dqn dp1 . . . dpnis invariant under the induced flow.
But the considered state space is not compact and the invariant measure is not
finite.

To avoid this difficulty we observe that
dH
dt

� BH
Bq 9q � BH

Bp 9p � BH
Bq

BH
Bp � BH

Bq
�
�BHBq

	
� 0

i.e. H is a first integral of (∗∗) (conservation of energy!). This means that XE :�
tpp, qq P R2n : Hpp, qq � Eu for every E P R is invariant under the flow. XE turns
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out to be a compact smooth manifold for typical values of the constant E, and we
obtain on it an “induced” measure by a method similar to the construction of the
1-dimensional Lebesgue measure from the 2-dimensional Lebesgue measure. This
induced measure is pϕtq-invariant and finite, and we obtain “continuous measure-
theoretical dynamical systems”.

Example (linear harmonic oscillator): Let X � R2 and let
�
p
q

�
be the canon-

ical coordinates onX. For simplicity, we suppose that the constants of the oscillator
are all 1. The Hamiltonian function is the sum of the kinetic and the potential en-
ergy and therefore

Hpp, qq � Hkinppq �Hpotpqq � 1
2
p2 � 1

2
q2

The system (∗∗) becomes

9q � p

9p � �q
and the solution with initial value

�
p
q

�
is

ϕt
��
p
q

�� � �a
p2 � q2 sinpt� βqa
p2 � q2 cospt� βq



,

where β P r0, 2πq is defined by
a
p2 � q2 � sinβ � q and

a
p2 � q2 � cosβ � p. Now,

let us consider the surface Hpp, qq � 1
2p

2 � 1
2q

2 �: E �constant.
Obviously, E must be positive. For E = 0 we have the (invariant) trivial manifold

t� 0
0

�u. For E ¡ 0 the pϕtqtPR-invariant manifold

XE :�
!�

p
q

� P R2 : Hpp, qq � E
)

is the circle about 0 with radius
?

2E, and therefore compact. The “induced”
invariant measure on XE is the 1-dimensional Lebesgue measure, and the induced
flow agrees with a flow of rotations on this circle.

II.D.10. Dilating an FDS to an MDS:
We have indicated in (II.D.6) that rather few FDSs on Banach spaces L1pµq are
induced by MDSs. But in (II.6) we presented an ingenious way of reducing the
study of certain FDSs to the study of MDSs. These constructions are solutions of
the following problem:

Let T be a bounded linear operator on E � L1pX,Σ, µq, µpXq � 1. Can we find
an MDS p pX, pΣ, pµ;ϕq and operators J and Q, such that the diagram

L1pX,Σ, µq L1pX,Σ, µq

L1p pX, pΣ, pµq L1p pX, pΣ, pµq

-Tn

?
J

-
pTnϕ

6
Q

commutes for all n � 0, 1, 2, . . . ?

If we want the MDS p pX, pΣ, pµ;ϕq to reflect somehow the “ergodic” behaviour
of the FDS pL1pX,Σ, µq;T q, it is clear that the operators J and Q must preserve
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the order structure of the L1-spaces (see II.4). Therefore, we call pL1p pX, pΣ, pµq; pTϕq,
resp. p pX, pΣ, pµ;ϕq, a lattice dilation of pL1pX,Σ, µq;T q if - in the diagram above - J is
an isometric lattice homomorphism (with J1 � p1), and Q is a positive contraction.
From these requirements it follows that T has to be positive with T1 � 1 and
T 11 � 1. In App. U we show that these conditions are even sufficient.


