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Appendix S. Invariant Measures

If (X;¢) is a TDS it is important to know whether there exists a probability
measure v on X which is invariant under ¢. Such an invariant measure allows
the application of the measure-theoretical results in the topological context. It is
even more important to obtain a g-invariant measure on X which is equivalent to
a particular probability measure (e.g. to the Lebesgue measure). The following two
results show that the answer to the first question is always positive while the second
property is equivalent to the mean ergodicity of some induced linear operator.

S.1 Theorem (Krylov-Bogoliubov, 1937):
Let X be compact and ¢ : X — X continuous. There exists a probability measure
v € C(X)" which is p-invariant.

Proof. Consider the induced operator T' := T, on C(X). Its adjoint T’ leaves
invariant the weak®-compact set & of all probability measures in M (X). If vy € 2,
then the sequence {7 vy : n € N} has a weaks-accumulation point v. It is easy to
see (use IV.3.0) that T'v = v, i.e. v is p-invariant. ]

As a consequence we observe that every TDS (X;¢) may be converted into an
MDS (X, B, i1; ) where B is the Borel algebra and p some p-invariant probability
measure. Moreover, the set &2, of all p-invariant measures in & is a convex
o(C(X)',C(X))-compact subset of C(X)’'. Therefore, the Krein-Milman theorem
yields many extreme points of &, called “ergodic measures”. The reason for that
nomenclature lies in the following characterization.

S.2 Corollary:
Let (X;¢) be a TDS. p is an extreme point of &, if and only if (X, B, u; ) is an
ergodic MDS.

Proof. If (X, B, u;¢) is not ergodic there exists A € B, 0 < u(A) < 1, such that
p(A) = A and p(X\A) = X\A. Define two different measures

_ wBnA)
ST

_ nBa(X\A)
p12(B) := ) for B € B.

Clearly, pp = p(A) - p1 + (1 — p(A)) - g2, and g not an extreme point of F,,.

On the other hand, assume (X, B, u;¢) to be ergodic. If u = %(,ul + po) for
w1, e € Py, then py < 2p and hence py € L (p) = L*(u). But the fixed space
of T in L™ (p) contains p and pjand is one-dimensional by (IV.6), (IV.4.e) and
(II1.4). Therefore we conclude p = pq, i.e. p must be an extreme point of &,. =

The question, whether there exist -invariant probability measures equivalent to
some distinguished measure, is more difficult and will be converted into a “mean
ergodic” problem.

S.3 Theorem:

Let u be a strictly positive probability measure on some compact space X and let
¢ 1 X = X be Borel measurable and non-singular with respect to u (i.e. u(4) =0
implies u(o=1(A)) = 0 for A € B). The following conditions are equivalent:
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(a) There exists a p-invariant probability measure v on X which is equivalent to
-

(b) For the induced operator T := T,, on L*(X, B, p1) the Cesaro means T' converge
in the o(L%, L')-operator topology to some strictly positive projection P €
L(L*"(u)), i.e. Pf>0for 0 < f e L*.

(¢) The pre-adjoint 7" of T = T, is mean ergodic on L' (u) and T'u = u for some
strictly positive u € L' (p).

Proof. The assumptions on ¢ imply that 7" = T, is a well-defined positive con-
traction on L*(u) having a pre-adjoint 77 on L'(m) (see Schaefer [1974], IIL9,
Example 1).

(a) = (c): By the Radon-Nikodym theorem the y-invariant probability measure v
equivalent to u corresponds to a normalized strictly positive T-invariant function
w € L'(u). But for such functions the order interval

[—u,u] := {f € L'(n) : —u < f < u}

is weakly compact and total in L' (). Therefore Tu = u implies the mean ergodicity
of T as in (IV.6).

(c) implies (b) by a simple argument using duality theory.

(b) = (a): The projection P : L™(u) — L™ (p) satisfies PT' = TP = P and maps
L*(u) onto the T-fixed space. Consider

vg:=puoP

which is a strictly positive ¢-invariant linear form on L*(u). Since the dual of
L* () decomposes into the band L' (i) and its orthogonal band we may take v as
the band component of vq in L' ().

By Ando [1968], Lemma 1, v is still strictly positive and hence defines a mea-
sure equivalent to u. Moreover, T'v is contained in L!(u) and dominated by vy,
hence T'v < v. From T1 = 1 we conclude T’v = v and that v is ¢ invariant.
Normalization of v yields the desired probability measure. ]

These abstract results are not only elegant and satisfying from a theoretical
standpoint, they can also help to solve rather concrete problems:

Let ¢ : [0,1] — [0, 1] be a transformation which is piecewise C?, i.e. there is a finite
partition of [0,1] in intervals A; such that ¢ can be extended continuously from
the interior Ai to the closure 4; and the resulting function ¢; is twice continuously
differentiable on A;. Moreover we assume that the derivatives ¢; do not vanish on

o

A;, p; is increasing or decreasing.

In this case, ¢ is measurable and non-singular with respect to the Lebesgue measure
m, and

Tf:=fop
defines a positive contraction on L*([0, 1], B,m) satisfying 71 = 1 and having a
pre-adjoint 7" on L(m).
As a consequence of this theorem, one concludes that ¢ possesses an invariant prob-

ability measure which is absolutely continuous with respect to m iff dim F/(T”) > 1.
In particular, this follows if 7" is mean ergodic.
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To find out under which conditions on ¢ this holds, we observe that the pre-adjoint
T’ can be written as

T f(x) = Zf op;  (z)oi(z)1p, (x),

where B; = ¢;(A;) and o0; is the absolute value of the derivative of ¢; .

In fact: For every x € (0,1),

T 1
J T'fdm=f fll(o,z)owdm=f f dm.
0 0 p—1(0,z)

Thus T"f is the derivative ¢ of the function g(z) = § ) f dm.

¢~ 10,2

If ¢ is piecewise C2, we can calculate this derivative and obtain the above formula.
Recall that the variation v(f) of a function f : [a,b] — R is defined as

o(f) = SUP{Z |f(tj) = f(tj—1)[ra=to <tr-- <tn= b}-
neN =1
With this concept and using some elementary analysis, one proves that

b
(+) o(f - 9) < v(P)lglle + f f - gl dm

if f is piecewise continuous and g continuously differentiable.
After these preparations we present the main result.

S.4 Proposition:
Let ¢ : [0,1] — [0,1] be piecewise C? such that
s :=inf{|p(t)| : t € (0,1) and ¢ differentiable at ¢} > 1.

Then there exists a -invariant probability measure on [0, 1] which is absolutely
continuous with respect to the Lebesgue measure m.

Proof. By (S.3) we have to show that the pre-adjoint 7, of T, is mean ergodic on
L'(m). The first part of the proof is of a technical nature. Choose n € N such that
s"™ > 2 and consider the map

P ="
which again is piecewise C?. Clearly,
inf{|®(t)| : t € (0,1) and ® differentiable at t} > s" > 2.

Now we estimate the variation (77, f) for any piecewise continuous function f :
[0,1] — R. To this purpose we need some constants determined by the function ®.
Take the partition of [0, 1] into intervals A; corresponding to ¢ and write

Tyf(z) = 3 f o0 (@)os(x)1p, (2)
=1

where B; = ®;(4;) and o;(z) = |($; ) (z)].
1. For o; we have o;(z) < s7" < 1 for every z € B,.

2. Put k := max{|6;(z)| : z € By i = 1,...,m} - max{|®;(z)| : . € 4;; i =
1,...,m}.
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3. For the interval A; = [a;_1,a;] we estimate

|f(ai-1)| +1f(ai)| < 2inf{[f(z)[ : z € Ai} +o(f

2
< WL [fldm +v(f|a;)

A;
m}.

Ai)

forh::max{m:izl,...,

Now, we can calculate:

(T < 3 0(f 0 8 (@)oie) - 15, (2))

1

~.
Il

<

s

Il
—

(Il (7 09 @) 15, + | 170877 - 51]am)

2

(by inequality (*) above)

<

”Mﬁ

Q
Il
—

(s~ 1) + @) +0(fla) + [ 1f 087 pdm)

(since max{|®;(z)| : 2z € A;;i = 1,...,m} =min{o;(z) : z € Bi;i = 1,...,m})

Ms

s QhJ |f| dm + 2v(f

(h+k)||f||1 + 257w (f).

Observing that v(1) = 0 and T4"1 is again piecewise continuous, we obtain by
induction

s+ [ 1siam)

v h+k:

1 sy for every r € N,

v(Tp"1) < (h+ k) 2

and therefore
h+k
ie. T4"1 < M -1 for r € N and some M > 0. For the final conclusion the abstract

mean ergodic theorem (IV.6) implies that Ty is mean ergodic. Since Tj = T,", the
same is true for 77 by (IV.D.2). (]

176" 1o < 176" 11 +0(T5"1) < 1+

In conclusion, we present some examples showing the range of the above propo-
sition.

S.5 Examples:
1. The transformation
2t foro<t<i
p(t) := s 2
2—-2t for = <t<1

satisfies the assumptions of our proposition and has a y-invariant measure. In
fact, m itself is invariant.



2. For

ot) i {%L_t for?<t<§
t—1 for 3 <t<1
The assumption |¢(t)| > 11is violated at ¢ = 0. In fact, there is no p-invariant and
with respect to m absolutely continuous measure on [0, 1], since TJ,” f converges
to 0 in measure for f € L!'(m) (see Lasota-Yorke [1973]).
3. For ¢(t) := 4t - (1 — t) is strongly violated, nevertheless there is a ¢-invariant
measure: Indeed, the equation S[O,z] fdm = S(p_l[o’z] f dm together with the
plausible assumption that f(¢) = f(1 —t) leads to

1 1
3—gVi-w

F(x)::f:f(t)dt—zfo fOdt=2-F(% —iV1—1).

By substituting # = sin® ¢ we obtain

F(sin®§) = 2F (% — L cos&) = 2F (sin® %)

which shows that F(z) = arcsin«/z is a solution. Thus the function
1
f@) = ———
(=) 2¢/z(1 — z)
yields a g-invariant measure f - m on [0, 1]
4. Finally, ¢(t) := 2(t — 27 for 27¢ <+ < 2'7% i e N, has ¢;(t) = 2, but infinitely
many discontinuities. Again there exists no @-invariant measure since T;n f
converges to zero in measure for f € L'(m).
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