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Appendix E. Some Analytic Lemmas

Here, we prove some analytic lemmas which we use in the present lectures but
don’t prove there in order not to interrupt the main line of the arguments. First,
we recall two definitions.

E.1 Definition:

1. A sequence (z,)nen of real (or complex) numbers is called Cesaro-summable if

n—1
lim — Z x; exists.
n—w N - °

1=

2. Let (n;)ien be a subsequence of Ny. Then (n;);en has density s € [0, 1], denoted
by d((ni)ien) = s. if

1
lim —|{n;:i € N} n {0,1,...,k—1}| = s
koo k
where | - | denotes the cardinality.

E.2 Lemma:
For (z,)nen, the following conditions are equivalent:

1 n—1
(i) Jim ~ ZO |zi| = 0.

(ii) There exists a subsequence N of Ny with d(IN) = 1 such that lirg xn = 0.

Proof. We define Nj :={0,1,...,k—1}.

(i) = (ii): Let J; := {n € Ng : |z,,| = £}, k > 0, and observe that J; € J, € ---
n—1

Since L 3 |a;| = L. 1|Ji A N,|, each J;, has density 0. Therefore, we can choose
i=0

integers 0= ng <nyp < ng < --- such that

1 1
E|Jk+1 N N,| < 1 for n = ny.

Define J := {Jpen(Jk+1 0 (Vnpys \IVn, ) and show d(J) = 0.
Let ny < n <ngyq. Then, we obtain

JNAN,=(JnNp)u(Jn (N\Np,)) € (Je 0 Ny,) U (Jke1 0 Ny,

and conclude that

1 1 1

— Nyl < -4+ ——.

n |J n n‘ k + k+1
If n tends to infinity, the same is true for k£, and hence, .J has density 0. Obviously,
the sequence N := N\J has the desired properties.
(ii) = (i): Let ¢ > 0 and ¢ := sup{|z,| : n € Ng}. Because of (ii) and d(N\N) =0
there exists n. € Nsuch that n > n. implies |z,,| < e forn € N and 1|(N\N)nN,| <
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e. If n = n.we conclude that
1 1 1
o Z |lzi| = — Z |zi| + i Z‘, ||
" i=0 " ie(N\N)AN, " ieNAN,

< %|(N\N) ANyl +¢

<(c+1)-e
[
E.3 Lemma:
Take a sequence (2 )nen of complex numbers such that
o
Z n|Zns1 — 2nl? < 0.
n=1
n
If lim — Z z; = 0, then lim,, ,, z, = 0.
nown =
Proof. Define ¢, := Y;_ k|2k11 — 2[>. Then
2n—3 2n—3 1/2
max{|zptr —2n| 1 <k <n—-2} < Z |zk+1 — 21| < ( Z |zk11 — zi|*(n — 2))
k=n k=n
< ¢y
1 n—2 1 n
and |Zn‘ = bn—l — 2b2n_2 + m Z (Zn+k — Zn) for bn = g Z Zi-
k=1 i=1
[

E.4 Lemma:
Let N;, i = 1,2,... be a subsequence of Ny with density d(N;) = 1. Then there
exists a subsequence N of Ny such that d(N) = 1 and N\N; is finite for every i € N.

Proof. There exists an increasing sequence (k;)ieny € N such that
; 1
1-927%g ElNl A {0,...,k—1}| for all & > k;.
If we define N :=("),.y N; U {0, ..., k; — 1}, then N has the desired properties. m

E.5 Lemma:
If (2, )nen is a sequence of psoitive reals satisfying x, 1 < @, + ., for all n,m e N,
then lim,,_, %" exists and equals inf ey ”7"

Proof. Fix n > 0, and for j > 0 write j = kn +m where k € Ny and 0 < m < n.
Then

Tj _ Tknim  Tkn | Im KTn  Tm o Tn | Tm

J kn +m kn kn kn kn
If 7 — oo then k — 00, too, and we obtain

n  kn’
limsup 2 < =%, andeven limsup =L < inf =2,
jow ) n jow ] neN n,

On the other inf ey “* < liminf,, ., %*, and the lemma is proved. [



