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Appendix C. Remarks on Banach Lattices and Commutative
Banach Algebras

(i) Banach lattices

A large part of ergodic theory, as presented in our lectures, takes place in the
concrete function spaces as introduced in (B.18)–(B.20). But these spaces bear
more structure than simply that of a Banach space. Above all it seems to us to
be the order structure of these function spaces and the positivity of the operators
under consideration which is decisive for ergodic theory. For the abstract theory of
Banach lattices and positive operators we refer to the monograph of H.H. Schaefer
[1974] where many of the methods we apply in concrete cases are developed. Again,
for the readers convenience we collect some of the fundamental examples, definitions
and results.

C.1. Order structure on function spaces:
Let E be one of the real function spaces CpXq orLppX,Σ, µq, 1 ¤ p   8. Then we
can transfer the order structure of R to E in the following way:

For f, g P E we call f positive, denoted f ¥ 0, if fpxq ¥ 0 for all x P X, and define

f _ g, the supremum of f and g, by pf _ gqpxq :� suptfpxq, gpxqu for all x P X
f ^ g, the infimum of f and g, by pf ^ gqpxq :� inftfpxq, gpxqu, for all x P X
|f |, the absolute value of f , by |f |pxq :� |fpxq| for all x P X.

The new functions f _ g, f ^ g and |f | again are elements of E.

Remark that for E � LppX,Σ, µq the above definitions make sense either by con-
sidering representatives of the equivalence classes or by performing the operations
for µ-almost all x P X.

Using the positive cone E� :� tf P E : f ¥ 0u we define an order relation on E by
f ¥ g if pg � fq P E�. Then E becomes an ordered vector space which is a lattice
for _ and ^.
Moreover, the norm of E is compatible with the lattice structure in the sense that
0 ¤ f ¤ g implies }f} ¤ }g}, and }|f |} � }f} for every f P E.

If we consider a complex function space E then the order relation “¤” is defined
only on the real part Er consisting of all real valued functions in E. But the
absolute value |f | makes sense for all f P E, and }|f |} � }f} holds.

C.2. A Banach lattice E is a real Banach space endowed with a vector ordering
“¤” making it into a vector lattice (i.e. |f | � f _ p�fq exists for every f P E and
satisfying the compatibility condition:

|f | ¤ g implies }f} ¤ }g} for all fg P E.
Complex Banach lattices can be defined in a canonical way analogous to the complex
function spaces in (C.1) (see Schaefer [1974], Ch.II,§11).

C.3. Let E be a Banach lattice. A subset A of E is called order bounded if A
is contained in some order interval rg, hs :� tf P E : g ¤ f ¤ hu for g, h P E.
The Banach lattice E is order complete if for every order bounded subset A the
supremum sup A exists. Examples of order complete Banach lattices are the spaces
Lppµq, 1 ¤ p ¤ 8, while Cpr0, 1sq is not order complete.
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C.4. Positive operators:
Let E, F be (real or complex) Banach lattices and T : E Ñ F a continuous linear
operator. T is positive if TE� � F�, or equivalently, if T |f | ¥ |Tf | for all f P E.

The morphisms for the vector lattice structure, called lattice homomorphisms, sat-
isfy the stronger condition T |f | � |Tf | for every f P E.

If the norm on E is strictly monotone (i.e. 0 ¤ f   g implies }f ||   }g}); e.g. E �
Lppµq for 1 ¤ p   8) then every positive isometry T on E is a lattice homomor-
phism. In fact, in that case |Tf | ¤ T |f | and }|Tf |} � }Tf} � }f} � }|f |} � }T |f |}
imply |Tf | � T |f |.
Finally, T is called order continuous (countably order continuous) if infαQA Txα � 0
for every downward directed net (sequence) pxαqαPA with infαQA xα � 0.

C.5. Examples of positive operators are provided by positive matrices and
integral operators with positive kernel (see Schaefer [1974], Ch. IV, §8).

Further, the multiplication operator

Mg : CpXq Ñ CpXq (resp. LppX,Σ, µq Ñ LppX,Σ, µq)
is a lattice homomorphism for every 0 ¤ g P CpXq (resp. 0 ¤ g P L8pX,Σ, µq).
The operators

Tϕ : f ÞÑ f � ϕ
induced in CpXq or LppX,Σ, µq, 1 ¤ p ¤ 8, by suitable transformations

ϕ : X Ñ X

are even lattice homomorphisms (see II.4).

(ii) Commutative Banach algebras

While certainly order and positivity are more important for ergodic theory, in some
places we use the multiplicative structure of certain function spaces.

C.6. Algebra structure on function spaces:
Let E be one of the complex function spaces CpXq or L8pX,Σ, µq. Then the
multiplicative structure of R can be transferred to E: for f, g P E we define

f � g, the product of f and g, by pf � gqpxq :� fpxq � gpxq for all x P X,

f�, the adjoint of f , by f�pxq :� fpxq for all x P X where “ ” denotes the complex
conjugation.
The function R1, defined by 1pxq :� 1 for all x P X, is the neutral element of the
above commutative multiplication. The operation “�” is an involution.

C.7. A C�-algebra A is a complex Banach space and an algebra with involution
� satisfying

}f � f�} � }f}2
for all f P A .
For our purposes we may restrict our attention to commutative C�-algebras. As
shown in (C.6) the function spaces CpXq and L8pX,Σ, µq are commutative C�-
algebras. Another example is the sequence space `8.
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C.8. Multiplicative operators:
Let A1 and A2 be two C�-algebras. The morphisms

T : A1 Ñ A2

corresponding to the C�-algebra structure of A1 and A2 are continuous linear
operators satisfying

T pf � gq � pTfq � pTgq
T pf�q � pTfq�and

for all f, g P A .

Let A � CpXq, resp. L8pX,Σ, µq. If ϕ : X Ñ X is a continuous, resp. measurable,
transformation, the induced operator

Tϕ : f ÞÑ f � ϕ
is a multiplicative operator on A satisfying Tϕ1 � 1 and Tϕf

� � pTϕfqast (see
II.4).

C.9. Representation theorem of Gelfand-Neumark:
Every commutative C�-algebra A with unit is isomorphic to a space CpXq. Here
X may be identified with the set of all non-zero multiplicative linear forms on A ,
endowed with the weak� topology (see Sakai [1971], 1.2.1).

We remark that for A � `8pNq the space X is homeomorphic to the Stone-Čech
compactification βN of N (see Schaefer [1974], p. 106), and for A � L8pY,Σ, µq,
X may be identified with the Stone representation space of the measure algebra qΣ
(see VI.D.6).


