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Appendix B. Some Functional Analysis

As indicated in the introduction, the present lectures on ergodic theory require
some familiarity with functional-analytic concepts and with functional-analytic
thinking. In particular, properties of Banach spaces E, their duals E1 and the
bounded linear operators on E and E1 play a central role. It is impossible to
introduce the newcomer into this world of Banach spaces in a short appendix. Nev-
ertheless, in a short “tour d’horizon” we put together some more or less standard
definitions, arguments and examples – not as an introduction into functional anal-
ysis but as a reminder of things you (should) already know or as a reference of
results we use throughout the book. Our standard source is Schaefer [1971].

B.1. Banach spaces:
Let E be a real or complex Banach space with norm } � } and closed unit ball
U :� tf P E : }f} ¤ 1u. We associate to E its dual E1 consisting of all continuous
linear functionals on E. Usually, E1 will be endowed with the dual norm

}f 1} :� supt|xf, f 1y| : }f} ¤ 1u
where x�, �y denotes the canonical bilinear form

pf, f 1q ÞÑ xf, f 1y :� f 1pfq on E � E1.

B.2. Weak topologies:
The topology on E of pointwise convergence on E1 is called the weak topology
and will be denoted by σpE,E1q. Analogously, one defines on E1 the topology of
pointwise convergence on E, called the weak� topology and denoted by σpE1, Eq.
These topologies are weaker than the corresponding strong (= norm) topologies,
and we need the following properties.

B.3. While in general not every strongly closed subset of a Banach space E is
weakly closed, it is true that the strong and weak closure coincide for convex sets
(Schaefer [1971], II.9.2, Corollary 2).

B.4. Theorem Alaoglu-Bourbaki:
The dual unit ball U� :� tf 1 P E1 : }f 1} ¤ 1u in E1 is weak� compact (Schaefer
[1971], IV.5.2).

From this one deduces: A Banach space E is reflexive (i.e. the canonical injection
from E into the bidual E2 is surjective) if and only if its unit ball is weakly compact
(Schaefer [1971], IV.5.6).

B.5. Theorem of Krein-Milman
Every weak� compact, convex subset of E1 is the closed, convex hull of its set of
extreme points (Schaefer [1971], II.10.4).

B.6. Theorem of Krein:
The closed, convex hull of a weakly compact set is still weakly compact (Schaefer
[1971], IV. 11.4).
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B.7. Bounded operators:
Let T be a bounded (=continuous) linear operator on the Banach space E. Then T
is called a contraction if }Tf} ¤ }f}, and an isometry if }Tf} � }f} for all f P E.
We remark that every bounded linear operator T on E is automatically continuous
for the weak topology on E (Schaefer [1971], III.1.1). For f P E and f 1 P E1 we
define the corresponding one-dimensional operator

f 1 b f by pf 1 b fqpgq :� xg, f 1y � f
for all g P E. Moreover we call a bounded linear operator P on E a projection if
P 2 � P . In that case we have P 2 � P .

Proposition: For a projection P on a Banach space E the dual of PE is (as a
topological vector space) isomorphic to the closed subspace P 1E1 of E1.

Proof. The linear map Φ : E1 Ñ pPEq1 defined by Φf 1 :� f |PE is surjective by the
Hahn-Banach theorem. Therefore pPEq1 is isomorphic to E1{ ker Φ. From kerΦ �
P 1�1p0q and E1 � P 1E1 ` P 1�1p0q we obtain pPEq1 � E1{P 1�1p0q � P 1E1.

B.8. The space L pEq of all bounded linear operators on E becomes a Banach
space if endowed with the operator norm

}T } :� supt}Tf} : }f} ¤ 1u.
But other topologies on L pEq will be used as well. We write LspEq if we en-
dow L pEq with the strong operator topology i.e. with the topology of simple (=
pointwise) convergence on E with respect to the norm topology. Therefore, a net
tTαu converges to T in the strong operator topology iff Tα

} � }ÝÑ Tf for all f P E.
Observe that the strong operator topology is the topology on L pEq induced from
the product topology on pE, } � }qE .

The weak operator topology on L pEq – write LwpEq – is the topology of simple
convergence on E with respect to σpE,E1q. Therefore,

Tα converges to T in the weak operator topology

iff xTαf, f 1y Ñ xTf, f 1y for all f P E, f 1 P E1.

Again, this topology is the topology on L pEq inherited from the product topology
on pE, σpE,E1qqE .

B.9. Bounded subsets of L pEq:
For M � L pEq the following are equivalent:
(a) M is bounded for the weak operator topology.
(b) M is bounded for the strong operator topology.
(c) M is uniformly bounded, i.e. supt}T } : T PMu   8.
(d) M is equicontinuous for } � }.
Proof. See Schaefer [1971], III.4.1, Corollary, and III.4.2 for (b) ô (c) ô (d); for
(a) ô (b) observe that the duals LspEq and LwpEq are identical (Schaefer [1971],
IV.4.3, Corollary 4). Consequently, the bounded subsets agree (Schaefer [1971],
IV.3.2, Corollary 2).

B.10. If M is a bounded subset of L pEq, then the closure of M as subset of the
productpE, } � }qE is still contained in L pEq (Schaefer [1971], III.4.3).



91

B.11. On bounded subsets M of L pEq, the topology of pointwise convergence on
a total subset A of E coincides with the strong operator topology. Here we call A
“total” if its linear hull is dense in E (Schaefer [1971], III.4.5).

The advantage of the strong, resp. weak, operator topology versus the norm topol-
ogy on L pEq is that more subsets of L pEq become compact. Therefore, the
following assertions (B.12)–(B.15) are of great importance.

B.12 Proposition:
For M � L pEq, g P E, we define the orbit Mg : tTg : T PMu � E, and the

Gs :� tf P E : Mf is relatively } � }-compactusubspaces

Gσ :� tf P E : Mf is relatively σpE,E1q-compactu.and

If M is bounded, then Gs and Gσ are } � }-closed in E

Proof. The assertion for Gs follows by a standard diagonal procedure. The argu-
ment for Gσ is more complicated: Let pfnqnPN be a sequence in Gσ converging to
f P E. By the theorem of Eberlein (Schaefer [1971], IV.11.2) it suffices to show
that every sequence pTkfqkPN, Tk P M has a subsequence which converges weakly.
Since f1 P Gσ there is a subsequence pTki1 f1q weakly converging to some g1 P E.
Since f2 P Gσ, there exists a subsequence such that pTki2 f2q such weakly converges
to g2, and so on. Applying a diagonal procedure we find a subsequence pTkiqiPN of
pTkqkPN such that Tkifn

iÑ8ÝÑ gn P E weakly for every n P N. From

}gn � gm} � sup
 xgn � gm, f

1y : }f 1} ¤ 1
(

� sup
 

lim
iÑ8

|xTkifn � Tkifm, f
1y| : }f 1} ¤ 1

(
¤ }Tki} � }fn � fm}

it follows that pgnqnPN is a Cauchy sequence, and therefore converges to some g P E.
A standard 3ε-argument shows Tkif

iÑ8ÝÑ g for σpE,E1q.

B.13 Proposition:
For a bounded subset M � L pEq the following are equivalent:

(a) M is relatively compact for the strong operator topology.
(b) Mf is relatively compact in E for every f P E.
(c) Mf is relatively compact for every f in a total subset of E.

Proof. (a) ñ (b) follows by the continuity of the mapping T ÞÑ Tf from LspEq
into E.

(b)ô (c) follows from (B.12), and (c)ñ (a) is a consequence of (A.3) and (B.10).

B.14 Proposition:
For a bounded subset M � L pEq the following are equivalent:

(a) M is relatively compact for the weak operator topology.
(b) Mf is relatively weakly compact for every f P E.
(c) Mf is relatively weakly compact for every f in a total subset of E.

The proof follows as in (B.13).
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B.15 Proposition:
Let M � L pEq be compact and choose a total subset A � E and a σpE1, Eq-
total subset A � E1. Then the weak operator topology on M coincides with the
topology of pointwise convergence on A and A1. In particular, M is metrizable if
E is separable and E1 is σpE1, Eq-separable (“separable” means that there exists a
countable dense set).

Proof. The semi-norms

Pf,f 1pT q :� |xTf, f 1y|, T PM,f P A, f 1 P A1

define a Hausdorff topology on M coarser than the weak operator topology. Since
M is compact, both topologies coincide (see A.2).

B.16. Continuity of the multiplication in L pEq:
In Lecture VII the multiplication

pS, T q ÞÑ S � T

in L pEq plays an important role. Therefore, we state its continuity properties: The
multiplication is jointly continuous on L pEq for the norm topology. In general, it is
only separately continuous for the strong or the weak operator topology. However,
it is jointly continuous on bounded subsets of LspEq (see Schaefer [1971], p. 183).

B.17. Spectral theory:
Let E be a complex Banach space and T P L pEq. The resolvent set ρpT q consists
of all complex numbers λ for which the resolvent Rpλ, T q :� pλ� T q�1 exists. The
mapping λ ÞÑ Rpλ, T q is holomorphic on ρpT q. The spectrum σpT q :� CzρpT q is
a non-empty compact subset of C, and two subsets of σpT q are of special interest:
the point spectrum

PσpT q :� tλ P σpT q : pλ� T q is not injectiveu

and the approximate point spectrum

AσpT q :� tλıσpT q : pλ� T qfn Ñ 0 for some normalized sequence pfnqu.

A complex number λ is called an (approximate) eigenvalue if λ P PσpAq (resp. λ P
AσpT q), and Fλ :� tf P E : pλ � T q � 0u is the eigenspace corresponding to the
eigenvalue λ; λ is a simple eigenvalue if dimFλ � 1.

The real number rpT q :� supt|λ| : λ P σpT qu is called the spectral radius of T , and

may be computed from the formula rpT q � limnÑ8
�}Tn}� 1

n .

If |λ| ¡ rpT q the resolvent can be expressed by the Neumann series

Rpλ, T q �
8̧

n�0

λpn�1qTn.

For more information we refer to Schaefer [1971], App. 1 and Reed-Simon [1972].
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B.18. The spaces CpXq and their duals MpXq:
Let X be a compact space. The space CpXq of all real (resp. complex) valued
continuous functions on X becomes a Banach space if endowed with the norm

}f} :� supt|fpxq| : x P Xu, f P CpXq.
The dual of CpXq, denoted MpXq, is called the space of Radon measures on X.
By the theorem of Riesz (Bauer [1972], 7.5) MpXq is (isomorphic to) the set of all
regular real-(resp. complex-)valued Borel measures on X (see A.12).

The Dirac measures δx, x P X, defined by xδx, fy :� fpxq for all f P CpXq, are
elements of MpXq, and we obtain from Lebesgue’s dominated convergence theorem
(see A.16) the following:

If fn, f P CpXq with }fn} ¤ c for all n P N, then fn converges to f for σpCpXq,MpXqq
if and only if xfn, δxy Ñ xf, δxy for all x P X.

B.19. Sequence spaces:
Let D be a set and take 1 ¤ p   8. The sequence space `ppDq is defined by

`ppDq :�
!
pxdqdPD :

¸
dPD

|xd|p   8
)

where xD are real (or complex) numbers.

Analogously, we define

`8pDq :�
!
pxdqdPD : sup

dPD
|xd|   8

)
.

The vector space `ppDq, resp. `8pDq, becomes a Banach space if endowed with the
norm

}pxdqdPD} :�
�¸
dPD

|xd|p
	1{p

,

}pxdqdPD} :� sup
dPD

|xd|.resp.

In our lectures, D equals N, N0 or Z. Instead of `ppDq we write `p if no confusion
is possible.

B.20. The LppX,Σ, µq:
Let pX,Σ, µq be a measure space and take 1 ¤ p   8 . By L pX,Σ, µq we denote
the vector space of all real- or complex-valued measurable functions on X with³
X
|f |p dµ   8. Then

}f}p :�
�»

X

|f |p dµ
	1{p

is a semi-norm on L ppX,Σ, µq,
Nµ :�  

f P L ppX,Σ, µq : }f}p � 0
(

and is a closed subspace. The quotient space

LppX,Σ, µq � Lppµq :� L ppX,Σ, µq{Nµ
endowed with the quotient norm is a Banach space. Analogously, one denotes by
L8pX,Σ, µq the vector space of µ-essentially bounded measurable functions on X.
Again,

}f}8 :�  
c P R� : µr|f | ¡ cs � 0

(
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yields a semi-norm on L8pX,Σ, µq and the subspace

Nµ :�  
f P L8pX,Σ, µq : }f}8 � 0

(
is closed. The quotient space

L8pX,Σ, µq � L8pµq :� L8pX,Σ, µq{Nµ
is a Banach space.

Even if the elements of LppX,Σ, µq are equivalence classes of functions it generally
causes no confusion if we calculate with the function f P L ppX,Σ, µq instead of its
equivalence class qf P LppX,Σ, µq (see II.D.4).

In addition, most operators used in ergodic theory are initially defined on the spaces
L ppX,Σ, µq. However, if they leave invariant Nµ, we can and shall consider the
induced operators on LppX,Σ, µq

B.21. For 1 ¤ p   8 the Banach space LppX,Σ, µq is separable if and only if the
measure algebra qΣ is separable.

B.22. If the measure space pX,Σ, µq is finite, then

L8pµq � Lp2pµq � Lp1pµq � L1pµq
for 1 ¤ p1 ¤ p2 ¤ 8.

B.23. Let pX,Σ, µq be σ-finite. Then the dual of LppX,Σ, µq, 1   p   8 is
isomorphic to LqpX,Σ, µq where 1

p � 1
q � 1, and the canonical bilinear form is given

by

xf, gy �
»
f � g dµ for f P Lppµ), g P L1pµq.

Analogously, the dual of L1pµq is isomorphic to L8pµq.

B.24. Conditional expectation:
Given a measure space pX,Σ, µq and a sub-σ-algebra Σ0 � Σ, we denote by J
the canonical injection from LppX,Σ0, µq into LppX,Σ, µq for 1 ¤ p ¤ 8. J is
contractive and positive (see C.4). Its (pre-)adjoint

P : LqpX,Σ, µq Ñ LqpX,Σ0, µq
is a positive contractive projection satisfying

P pf � gq � g � P pfq for f P LqpX,Σ, µq, g P L8pX,Σ0, µq.

Proof. P is positive and contractive since J enjoys the same properties. The above
identity follows from

xP pfgq, hy � xfg, Jhy �
»
fgh dµ � xf, Jpghqyy � xpPfqg, hy

for all (real) h P LppX,Σ0, µq.

We call P the conditional expectation operator corresponding to Σ0. For its prob-
abilistic interpretation see Ash [1972], Ch. 6.
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B.25. Direct sums:
Let Ei, i P N, be Banach spaces with corresponding norms } � }i, and let 1 ¤ p   8.
The `p-direct sum of pEiqiPN is defined by

E :�à
p

Ei :�
!
pxiqiPN : xi P Ei for all i P N and

°
iPN }xi}pi   8

)
.

E is a Banach space under the norm

}pxiqiPN} :�
�¸
iPN

}xi}pi
	1{p

Given Si P L pEiq with supiPN }Si}   8, thenà
Si : pxiqiPN ÞÑ pSixiqiPN

is a bounded linear operator on E with }ÀSi} � supt}Si} : i P Nu. Analogously
one defines the `8-direct sum

À
8Ei.


