Appendix B. Some Functional Analysis

As indicated in the introduction, the present lectures on ergodic theory require some familiarity with functional-analytic concepts and with functional-analytic thinking. In particular, properties of Banach spaces E, their duals E' and the bounded linear operators on E and E' play a central role. It is impossible to introduce the newcomer into this world of Banach spaces in a short appendix. Nevertheless, in a short "tour d'horizon" we put together some more or less standard definitions, arguments and examples – not as an introduction into functional analysis but as a reminder of things you (should) already know or as a reference of results we use throughout the book. Our standard source is Schaefer [1971].

B.1. Banach spaces:

Let E be a real or complex Banach space with norm $\|\cdot\|$ and closed unit ball $U := \{f \in E : \|f\| \le 1\}$. We associate to E its dual E' consisting of all continuous linear functionals on E. Usually, E' will be endowed with the dual norm

$$||f'|| := \sup\{|\langle f, f' \rangle| : ||f|| \le 1\}$$

where $\langle \cdot, \cdot \rangle$ denotes the canonical bilinear form

$$(f, f') \mapsto \langle f, f' \rangle := f'(f) \text{ on } E \times E'.$$

B.2. Weak topologies:

The topology on E of pointwise convergence on E' is called the weak topology and will be denoted by $\sigma(E,E')$. Analogously, one defines on E' the topology of pointwise convergence on E, called the weak* topology and denoted by $\sigma(E',E)$. These topologies are weaker than the corresponding strong (= norm) topologies, and we need the following properties.

B.3. While in general not every strongly closed subset of a Banach space E is weakly closed, it is true that the strong and weak closure coincide for convex sets (Schaefer [1971], II.9.2, Corollary 2).

B.4. Theorem Alaoglu-Bourbaki:

The dual unit ball $U^{\circ} := \{ f' \in E' : ||f'|| \leq 1 \}$ in E' is weak* compact (Schaefer [1971], IV.5.2).

From this one deduces: A Banach space E is reflexive (i.e. the canonical injection from E into the bidual E'' is surjective) if and only if its unit ball is weakly compact (Schaefer [1971], IV.5.6).

B.5. Theorem of Krein-Milman

Every weak* compact, convex subset of E' is the closed, convex hull of its set of extreme points (Schaefer [1971], II.10.4).

B.6. Theorem of Krein:

The closed, convex hull of a weakly compact set is still weakly compact (Schaefer [1971], IV. 11.4).

B.7. Bounded operators:

Let T be a bounded (=continuous) linear operator on the Banach space E. Then T is called a *contraction* if $||Tf|| \leq ||f||$, and an *isometry* if ||Tf|| = ||f|| for all $f \in E$. We remark that every bounded linear operator T on E is automatically continuous for the weak topology on E (Schaefer [1971], III.1.1). For $f \in E$ and $f' \in E'$ we define the corresponding *one-dimensional operator*

$$f' \otimes f$$
 by $(f' \otimes f)(g) := \langle g, f' \rangle \cdot f$

for all $g \in E$. Moreover we call a bounded linear operator P on E a projection if $P^2 = P$. In that case we have $P^2 = P$.

Proposition: For a projection P on a Banach space E the dual of PE is (as a topological vector space) isomorphic to the closed subspace P'E' of E'.

Proof. The linear map $\Phi: E' \to (PE)'$ defined by $\Phi f' := f|_{PE}$ is surjective by the Hahn-Banach theorem. Therefore (PE)' is isomorphic to $E'/\ker \Phi$. From $\ker \Phi = P'^{-1}(0)$ and $E' = P'E' \oplus P'^{-1}(0)$ we obtain $(PE)' \simeq E'/P'^{-1}(0) \simeq P'E'$.

B.8. The space $\mathcal{L}(E)$ of all bounded linear operators on E becomes a Banach space if endowed with the *operator norm*

$$||T|| := \sup\{||Tf|| : ||f|| \le 1\}.$$

But other topologies on $\mathscr{L}(E)$ will be used as well. We write $\mathscr{L}_s(E)$ if we endow $\mathscr{L}(E)$ with the strong operator topology i.e. with the topology of simple (= pointwise) convergence on E with respect to the norm topology. Therefore, a net $\{T_{\alpha}\}$ converges to T in the strong operator topology iff $T_{\alpha} \xrightarrow{\|\cdot\|} Tf$ for all $f \in E$. Observe that the strong operator topology is the topology on $\mathscr{L}(E)$ induced from the product topology on $(E, \|\cdot\|)^E$.

The weak operator topology on $\mathcal{L}(E)$ – write $\mathcal{L}_w(E)$ – is the topology of simple convergence on E with respect to $\sigma(E, E')$. Therefore,

 T_{α} converges to T in the weak operator topology

iff
$$\langle T_{\alpha}f, f' \rangle \rightarrow \langle Tf, f' \rangle$$
 for all $f \in E, f' \in E'$.

Again, this topology is the topology on $\mathscr{L}(E)$ inherited from the product topology on $(E, \sigma(E, E'))^E$.

B.9. Bounded subsets of $\mathcal{L}(E)$:

For $M \subseteq \mathcal{L}(E)$ the following are equivalent:

- (a) M is bounded for the weak operator topology.
- (b) M is bounded for the strong operator topology.
- (c) M is uniformly bounded, i.e. $\sup\{\|T\|: T \in M\} < \infty$.
- (d) M is equicontinuous for $\|\cdot\|$.

Proof. See Schaefer [1971], III.4.1, Corollary, and III.4.2 for (b) \Leftrightarrow (c) \Leftrightarrow (d); for (a) \Leftrightarrow (b) observe that the duals $\mathcal{L}_s(E)$ and $\mathcal{L}_w(E)$ are identical (Schaefer [1971], IV.4.3, Corollary 4). Consequently, the bounded subsets agree (Schaefer [1971], IV.3.2, Corollary 2).

B.10. If M is a bounded subset of $\mathcal{L}(E)$, then the closure of M as subset of the product $(E, \|\cdot\|)^E$ is still contained in $\mathcal{L}(E)$ (Schaefer [1971], III.4.3).

B.11. On bounded subsets M of $\mathcal{L}(E)$, the topology of pointwise convergence on a total subset A of E coincides with the strong operator topology. Here we call A "total" if its linear hull is dense in E (Schaefer [1971], III.4.5).

The advantage of the strong, resp. weak, operator topology versus the norm topology on $\mathcal{L}(E)$ is that more subsets of $\mathcal{L}(E)$ become compact. Therefore, the following assertions (B.12)–(B.15) are of great importance.

B.12 Proposition:

For $M \subseteq \mathcal{L}(E)$, $q \in E$, we define the orbit $Mq : \{Tq : T \in M\} \subseteq E$, and the

subspaces $G_s := \{ f \in E : Mf \text{ is relatively } \| \cdot \| \text{-compact} \}$ and $G_{\sigma} := \{ f \in E : Mf \text{ is relatively } \sigma(E, E') \text{-compact} \}.$

If M is bounded, then G_s and G_σ are $\|\cdot\|$ -closed in E

Proof. The assertion for G_s follows by a standard diagonal procedure. The argument for G_σ is more complicated: Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in G_σ converging to $f\in E$. By the theorem of Eberlein (Schaefer [1971], IV.11.2) it suffices to show that every sequence $(T_k f)_{k\in\mathbb{N}}, T_k \in M$ has a subsequence which converges weakly. Since $f_1 \in G_\sigma$ there is a subsequence $(T_{ki_1}f_1)$ weakly converging to some $g_1 \in E$. Since $f_2 \in G_\sigma$, there exists a subsequence such that $(T_{ki_2}f_2)$ such weakly converges to g_2 , and so on. Applying a diagonal procedure we find a subsequence $(T_{ki})_{i\in\mathbb{N}}$ of $(T_k)_{k\in\mathbb{N}}$ such that $T_{ki_1}f_n \xrightarrow{i\to\infty} g_n \in E$ weakly for every $n\in\mathbb{N}$. From

$$||g_{n} - g_{m}|| = \sup\{\langle g_{n} - g_{m}, f' \rangle : ||f'|| \leq 1\}$$

$$= \sup\{\lim_{i \to \infty} |\langle T_{k_{i}} f_{n} - T_{k_{i}} f_{m}, f' \rangle| : ||f'|| \leq 1\}$$

$$\leq ||T_{k_{i}}|| \cdot ||f_{n} - f_{m}||$$

it follows that $(g_n)_{n\in\mathbb{N}}$ is a Cauchy sequence, and therefore converges to some $g\in E$. A standard 3ε -argument shows $T_{k_i}f\overset{i\to\infty}{\longrightarrow}g$ for $\sigma(E,E')$.

B.13 Proposition:

For a bounded subset $M \subseteq \mathcal{L}(E)$ the following are equivalent:

- (a) M is relatively compact for the strong operator topology.
- (b) Mf is relatively compact in E for every $f \in E$.
- (c) Mf is relatively compact for every f in a total subset of E.

Proof. (a) \Rightarrow (b) follows by the continuity of the mapping $T \mapsto Tf$ from $\mathcal{L}_s(E)$ into E.

(b) \Leftrightarrow (c) follows from (B.12), and (c) \Rightarrow (a) is a consequence of (A.3) and (B.10).

B.14 Proposition:

For a bounded subset $M \subseteq \mathcal{L}(E)$ the following are equivalent:

- (a) M is relatively compact for the weak operator topology.
- (b) Mf is relatively weakly compact for every $f \in E$.
- (c) Mf is relatively weakly compact for every f in a total subset of E.

The proof follows as in (B.13).

B.15 Proposition:

Let $M \subseteq \mathcal{L}(E)$ be compact and choose a total subset $A \subseteq E$ and a $\sigma(E', E)$ -total subset $A \subseteq E'$. Then the weak operator topology on M coincides with the topology of pointwise convergence on A and A'. In particular, M is metrizable if E is separable and E' is $\sigma(E', E)$ -separable ("separable" means that there exists a countable dense set).

Proof. The semi-norms

$$P_{f,f'}(T) := |\langle Tf, f' \rangle|, \quad T \in M, f \in A, f' \in A'$$

define a Hausdorff topology on M coarser than the weak operator topology. Since M is compact, both topologies coincide (see A.2).

B.16. Continuity of the multiplication in $\mathcal{L}(E)$:

In Lecture VII the multiplication

$$(S,T) \mapsto S \circ T$$

in $\mathcal{L}(E)$ plays an important role. Therefore, we state its continuity properties: The multiplication is jointly continuous on $\mathcal{L}(E)$ for the norm topology. In general, it is only separately continuous for the strong or the weak operator topology. However, it is jointly continuous on bounded subsets of $\mathcal{L}_s(E)$ (see Schaefer [1971], p. 183).

B.17. Spectral theory:

Let E be a complex Banach space and $T \in \mathcal{L}(E)$. The resolvent set $\rho(T)$ consists of all complex numbers λ for which the resolvent $R(\lambda, T) := (\lambda - T)^{-1}$ exists. The mapping $\lambda \mapsto R(\lambda, T)$ is holomorphic on $\rho(T)$. The spectrum $\sigma(T) := \mathbb{C} \setminus \rho(T)$ is a non-empty compact subset of \mathbb{C} , and two subsets of $\sigma(T)$ are of special interest: the point spectrum

$$P\sigma(T) := \{\lambda \in \sigma(T) : (\lambda - T) \text{ is not injective}\}\$$

and the approximate point spectrum

$$A\sigma(T) := \{\lambda i\sigma(T) : (\lambda - T)f_n \to 0 \text{ for some normalized sequence } (f_n)\}.$$

A complex number λ is called an (approximate) eigenvalue if $\lambda \in P\sigma(A)$ (resp. $\lambda \in A\sigma(T)$), and $F_{\lambda} := \{f \in E : (\lambda - T) = 0\}$ is the eigenspace corresponding to the eigenvalue λ ; λ is a simple eigenvalue if dim $F_{\lambda} = 1$.

The real number $r(T) := \sup\{|\lambda| : \lambda \in \sigma(T)\}$ is called the *spectral radius* of T, and may be computed from the formula $r(T) = \lim_{n \to \infty} (\|T^n\|)^{\frac{1}{n}}$.

If $|\lambda| > r(T)$ the resolvent can be expressed by the Neumann series

$$R(\lambda, T) = \sum_{n=0}^{\infty} \lambda^{(n+1)} T^{n}.$$

For more information we refer to Schaefer [1971], App. 1 and Reed-Simon [1972].

B.18. The spaces C(X) and their duals M(X):

Let X be a compact space. The space C(X) of all real (resp. complex) valued continuous functions on X becomes a Banach space if endowed with the norm

$$||f|| := \sup\{|f(x)| : x \in X\}, \quad f \in C(X).$$

The dual of C(X), denoted M(X), is called the space of Radon measures on X. By the theorem of Riesz (Bauer [1972], 7.5) M(X) is (isomorphic to) the set of all regular real-(resp. complex-)valued Borel measures on X (see A.12).

The Dirac measures δ_x , $x \in X$, defined by $\langle \delta_x, f \rangle := f(x)$ for all $f \in C(X)$, are elements of M(X), and we obtain from Lebesgue's dominated convergence theorem (see A.16) the following:

If $f_n, f \in C(X)$ with $||f_n|| \le c$ for all $n \in \mathbb{N}$, then f_n converges to f for $\sigma(C(X), M(X))$ if and only if $\langle f_n, \delta_x \rangle \to \langle f, \delta_x \rangle$ for all $x \in X$.

B.19. Sequence spaces:

Let D be a set and take $1 \leq p < \infty$. The sequence space $\ell^p(D)$ is defined by

$$\ell^p(D) := \left\{ (x_d)_{d \in D} : \sum_{d \in D} |x_d|^p < \infty \right\}$$

where x_D are real (or complex) numbers.

Analogously, we define

$$\ell^{\infty}(D) := \Big\{ (x_d)_{d \in D} : \sup_{d \in D} |x_d| < \infty \Big\}.$$

The vector space $\ell^p(D)$, resp. $\ell^{\infty}(D)$, becomes a Banach space if endowed with the norm

$$\|(x_d)_{d \in D}\| := \left(\sum_{d \in D} |x_d|^p\right)^{1/p},$$

 $\|(x_d)_{d \in D}\| := \sup_{d \in D} |x_d|.$

resp.

In our lectures, D equals \mathbb{N} , \mathbb{N}_0 or \mathbb{Z} . Instead of $\ell^p(D)$ we write ℓ^p if no confusion is possible.

B.20. The $L^p(X, \Sigma, \mu)$:

Let (X, Σ, μ) be a measure space and take $1 \leq p < \infty$. By $\mathcal{L}(X, \Sigma, \mu)$ we denote the vector space of all real- or complex-valued measurable functions on X with $\int_X |f|^p \,\mathrm{d}\mu < \infty$. Then

$$||f||_p := \left(\int_X |f|^p \,\mathrm{d}\mu\right)^{1/p}$$

is a semi-norm on $\mathcal{L}^p(X,\Sigma,\mu)$.

$$N_{\mu} := \left\{ f \in \mathcal{L}^p(X, \Sigma, \mu) : \|f\|_p = 0 \right\}$$

and is a closed subspace. The quotient space

$$L^p(X, \Sigma, \mu) = L^p(\mu) := \mathcal{L}^p(X, \Sigma, \mu)/N_\mu$$

endowed with the quotient norm is a Banach space. Analogously, one denotes by $\mathscr{L}^{\infty}(X,\Sigma,\mu)$ the vector space of μ -essentially bounded measurable functions on X. Again,

$$\|f\|_{\infty}:=\left\{c\in\mathbb{R}^{+}:\mu[|f|>c]=0\right\}$$

yields a semi-norm on $\mathcal{L}^{\infty}(X,\Sigma,\mu)$ and the subspace

$$N_{\mu} := \left\{ f \in \mathscr{L}^{\infty}(X, \Sigma, \mu) : ||f||_{\infty} = 0 \right\}$$

is closed. The quotient space

$$L^{\infty}(X, \Sigma, \mu) = L^{\infty}(\mu) := \mathscr{L}^{\infty}(X, \Sigma, \mu)/N_{\mu}$$

is a Banach space.

Even if the elements of $L^p(X, \Sigma, \mu)$ are equivalence classes of functions it generally causes no confusion if we calculate with the function $f \in \mathcal{L}^p(X, \Sigma, \mu)$ instead of its equivalence class $\check{f} \in L^p(X, \Sigma, \mu)$ (see II.D.4).

In addition, most operators used in ergodic theory are initially defined on the spaces $\mathcal{L}^p(X, \Sigma, \mu)$. However, if they leave invariant N_{μ} , we can and shall consider the induced operators on $L^p(X, \Sigma, \mu)$

B.21. For $1 \leq p < \infty$ the Banach space $L^p(X, \Sigma, \mu)$ is separable if and only if the measure algebra $\check{\Sigma}$ is separable.

B.22. If the measure space (X, Σ, μ) is finite, then

$$L^{\infty}(\mu) \subseteq L^{p_2}(\mu) \subseteq L^{p_1}(\mu) \subseteq L^1(\mu)$$

for $1 \leq p_1 \leq p_2 \leq \infty$.

B.23. Let (X, Σ, μ) be σ -finite. Then the dual of $L^p(X, \Sigma, \mu)$, $1 is isomorphic to <math>L^q(X, \Sigma, \mu)$ where $\frac{1}{p} + \frac{1}{q} = 1$, and the canonical bilinear form is given by

$$\langle f, g \rangle = \int f \cdot g \, \mathrm{d}\mu \quad \text{for } f \in L^p(\mu), \, g \in L^1(\mu).$$

Analogously, the dual of $L^1(\mu)$ is isomorphic to $L^{\infty}(\mu)$.

B.24. Conditional expectation:

Given a measure space (X, Σ, μ) and a sub- σ -algebra $\Sigma_0 \subseteq \Sigma$, we denote by J the canonical injection from $L^p(X, \Sigma_0, \mu)$ into $L^p(X, \Sigma, \mu)$ for $1 \leq p \leq \infty$. J is contractive and positive (see C.4). Its (pre-)adjoint

$$P: L^q(X, \Sigma, \mu) \to L^q(X, \Sigma_0, \mu)$$

is a positive contractive projection satisfying

$$P(f \cdot q) = q \cdot P(f)$$
 for $f \in L^q(X, \Sigma, \mu), q \in L^\infty(X, \Sigma_0, \mu)$.

 ${\it Proof.}\ P$ is positive and contractive since J enjoys the same properties. The above identity follows from

$$\langle P(fg), h \rangle = \langle fg, Jh \rangle = \int fgh \, \mathrm{d}\mu = \langle f, J(gh) \rangle \rangle = \langle (Pf)g, h \rangle$$

for all (real) $h \in L^p(X, \Sigma_0, \mu)$.

We call P the conditional expectation operator corresponding to Σ_0 . For its probabilistic interpretation see Ash [1972], Ch. 6.

B.25. Direct sums:

Let E_i , $i \in \mathbb{N}$, be Banach spaces with corresponding norms $\|\cdot\|_i$, and let $1 \leq p < \infty$. The ℓ^p -direct sum of $(E_i)_{i \in \mathbb{N}}$ is defined by

$$E := \bigoplus_{p} E_{i} := \left\{ (x_{i})_{i \in \mathbb{N}} : x_{i} \in E_{i} \text{ for all } i \in \mathbb{N} \text{ and } \sum_{i \in \mathbb{N}} \|x_{i}\|_{i}^{p} < \infty \right\}.$$

 ${\cal E}$ is a Banach space under the norm

$$\|(x_i)_{i\in\mathbb{N}}\| := \left(\sum_{i\in\mathbb{N}} \|x_i\|_i^p\right)^{1/p}$$

Given $S_i \in \mathcal{L}(E_i)$ with $\sup_{i \in \mathbb{N}} ||S_i|| < \infty$, then

$$\bigoplus S_i: (x_i)_{i\in\mathbb{N}} \mapsto (S_i x_i)_{i\in\mathbb{N}}$$

is a bounded linear operator on E with $\| \bigoplus S_i \| = \sup\{ \|S_i\| : i \in \mathbb{N} \}$. Analogously one defines the ℓ^{∞} -direct sum $\bigoplus_{\infty} E_i$.