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Appendix B. Some Functional Analysis

As indicated in the introduction, the present lectures on ergodic theory require
some familiarity with functional-analytic concepts and with functional-analytic
thinking. In particular, properties of Banach spaces E, their duals E’ and the
bounded linear operators on E and E’ play a central role. It is impossible to
introduce the newcomer into this world of Banach spaces in a short appendix. Nev-
ertheless, in a short “tour d’horizon” we put together some more or less standard
definitions, arguments and examples — not as an introduction into functional anal-
ysis but as a reminder of things you (should) already know or as a reference of
results we use throughout the book. Our standard source is Schaefer [1971].

B.1. Banach spaces:

Let E be a real or complex Banach space with norm | - | and closed unit ball
U:={feFE:|f| <1} We associate to E its dual E’ consisting of all continuous
linear functionals on E. Usually, E’ will be endowed with the dual norm

IF1 = sup{KF, Sl = [ < 1}

where (-, -» denotes the canonical bilinear form
(L, f)=>Lf ) =F(f) onExE.

B.2. Weak topologies:

The topology on E of pointwise convergence on E’ is called the weak topology
and will be denoted by o¢(E, E’'). Analogously, one defines on E’ the topology of
pointwise convergence on E, called the weak* topology and denoted by o(E', E).
These topologies are weaker than the corresponding strong (= norm) topologies,
and we need the following properties.

B.3. While in general not every strongly closed subset of a Banach space F is
weakly closed, it is true that the strong and weak closure coincide for convex sets
(Schaefer [1971], 11.9.2, Corollary 2).

B.4. Theorem Alaoglu-Bourbaki:
The dual unit ball U°® := {f' € E' : ||f|| < 1} in E’ is weak* compact (Schaefer
[1971], IV.5.2).

From this one deduces: A Banach space E is reflexive (i.e. the canonical injection
from F into the bidual E” is surjective) if and only if its unit ball is weakly compact
(Schaefer [1971], IV.5.6).

B.5. Theorem of Krein-Milman
Every weak* compact, convex subset of E’ is the closed, convex hull of its set of
extreme points (Schaefer [1971], I1.10.4).

B.6. Theorem of Krein:
The closed, convex hull of a weakly compact set is still weakly compact (Schaefer
[1971], IV. 11.4).
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B.7. Bounded operators:

Let T be a bounded (=continuous) linear operator on the Banach space E. Then T
is called a contraction if |Tf| < |f], and an isometry if [T f|| = || f| for all f € E.
We remark that every bounded linear operator 7" on E is automatically continuous
for the weak topology on E (Schaefer [1971], III.1.1). For f € F and f’' € E’ we
define the corresponding one-dimensional operator

fof by (f@fg) =L f)f

for all g € E. Moreover we call a bounded linear operator P on E a projection if
P? = P. In that case we have P? = P.

Proposition: For a projection P on a Banach space E the dual of PFE is (as a
topological vector space) isomorphic to the closed subspace P'E’ of E’.

Proof. The linear map ® : £ — (PE)’ defined by ®f' := f|pg is surjective by the
Hahn-Banach theorem. Therefore (PE)’ is isomorphic to E’/ker ®. From ker & =
P '(0) and E' = P'E' ® P'"'(0) we obtain (PE)' ~ E'/P''(0) ~ P'E. .

B.8. The space Z(F) of all bounded linear operators on E becomes a Banach
space if endowed with the operator norm

TN = sup{|TF) = 7] < 1}

But other topologies on Z(F) will be used as well. We write .Z,(E) if we en-
dow Z(FE) with the strong operator topology i.e. with the topology of simple (=
pointwise) convergence on E with respect to the norm topology. Therefore, a net

{T,} converges to T in the strong operator topology iff T, Ly Tf for all f € E.
Observe that the strong operator topology is the topology on Z(F) induced from
the product topology on (E, | - |)¥.

The weak operator topology on L(E) — write Z,(FE) — is the topology of simple
convergence on F with respect to o(FE, E’). Therefore,

T, converges to T in the weak operator topology
it (Tof,f>—>(Tf f> forall feE, f'eFE.

Again, this topology is the topology on Z(FE) inherited from the product topology
on (E,o(E,E"))F.

B.9. Bounded subsets of Z(E):
For M < Z(FE) the following are equivalent:

(a) M is bounded for the weak operator topology.

(b) M is bounded for the strong operator topology.

(¢) M is uniformly bounded, i.e. sup{|T| : T € M} < c0.
(d) M is equicontinuous for | - ||.

Proof. See Schaefer [1971], I11.4.1, Corollary, and I11.4.2 for (b) < (c) < (d); for
(a) & (b) observe that the duals Z5(F) and .Z,,(E) are identical (Schaefer [1971],
IV.4.3, Corollary 4). Consequently, the bounded subsets agree (Schaefer [1971],
IV.3.2, Corollary 2). ]

B.10. If M is a bounded subset of .Z(FE), then the closure of M as subset of the
product(E, | - |)¥ is still contained in .Z(F) (Schaefer [1971], I11.4.3).
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B.11. On bounded subsets M of Z(F), the topology of pointwise convergence on
a total subset A of E coincides with the strong operator topology. Here we call A
“total” if its linear hull is dense in E (Schaefer [1971], II1.4.5).

The advantage of the strong, resp. weak, operator topology versus the norm topol-
ogy on Z(F) is that more subsets of .Z(E) become compact. Therefore, the
following assertions (B.12)—(B.15) are of great importance.

B.12 Proposition:

For M € Z(F), g € E, we define the orbit Mg: {Tg:T € M} € E, and the
subspaces Gs:={f e E: Mf is relatively || - [-compact}

and G, :={f € FE:Mf is relatively o(E, E')-compact}.

If M is bounded, then G, and G, are | - |-closed in E

Proof. The assertion for G follows by a standard diagonal procedure. The argu-
ment for G, is more complicated: Let (f,)nen be a sequence in G, converging to
f € E. By the theorem of Eberlein (Schaefer [1971], TV.11.2) it suffices to show
that every sequence (Tkf)ren, Tk € M has a subsequence which converges weakly.
Since f1 € G, there is a subsequence (Tk, f1) weakly converging to some g; € E.
Since f € G, there exists a subsequence such that (T%,, f2) such weakly converges
to g2, and so on. Applying a diagonal procedure we find a subsequence (T}, )en of

(Tk)ken such that Tk, fr =% gn € E weakly for every n € N. From
lgn = gml = sup{<gn = gm, [ < /'] < 1}
— sup{ i [(Ti fu = TS £3]: 117] < 1)
SNl - 1 = ol

it follows that (g, )nen is a Cauchy sequence, and therefore converges to some g € E.
A standard 3e-argument shows T}, f —= g for o(E, E'). L]

B.13 Proposition:
For a bounded subset M € .Z(E) the following are equivalent:

(a) M is relatively compact for the strong operator topology.
(b) M is relatively compact in F for every f € E.
(¢c) Mf is relatively compact for every f in a total subset of E.

Proof. (a) = (b) follows by the continuity of the mapping T' — T'f from Z(E)
into E.

(b) « (c) follows from (B.12), and (c) = (a) is a consequence of (A.3) and (B.10). =

B.14 Proposition:

For a bounded subset M € Z(F) the following are equivalent:

(a) M is relatively compact for the weak operator topology.

(b) M f is relatively weakly compact for every f € E.

(c) Mf is relatively weakly compact for every f in a total subset of E.

The proof follows as in (B.13).
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B.15 Proposition:
Let M € Z(FE) be compact and choose a total subset A € FE and a o(F’, E)-
total subset A € E’. Then the weak operator topology on M coincides with the
topology of pointwise convergence on A and A’. In particular, M is metrizable if
E is separable and E’ is o(E’, F)-separable (“separable” means that there exists a
countable dense set).

Proof. The semi-norms
Prp(T):=KTf, ), TeMfeAfeA

define a Hausdorff topology on M coarser than the weak operator topology. Since
M is compact, both topologies coincide (see A.2). [

B.16. Continuity of the multiplication in Z(E):
In Lecture VII the multiplication

(S, T)— SoT

in Z(E) plays an important role. Therefore, we state its continuity properties: The
multiplication is jointly continuous on .Z(FE) for the norm topology. In general, it is
only separately continuous for the strong or the weak operator topology. However,
it is jointly continuous on bounded subsets of .Z;(E) (see Schaefer [1971], p. 183).

B.17. Spectral theory:

Let E be a complex Banach space and T' € Z(F). The resolvent set p(T') consists
of all complex numbers A for which the resolvent R(\,T) := (A —T)~! exists. The
mapping A — R(\,T) is holomorphic on p(T'). The spectrum o(T) := C\p(T) is
a non-empty compact subset of C, and two subsets of o(T") are of special interest:
the point spectrum

Po(T):={ e o(T): (A—T) is not injective}
and the approzimate point spectrum
Ao (T) :={No(T) : (A =T)f, — 0 for some normalized sequence (f,)}.

A complex number A is called an (approximate) eigenvalue if A € Po(A) (resp. A €
Ao(T)), and F := {f € E : (A\—T) = 0} is the eigenspace corresponding to the
eigenvalue \; A is a simple eigenvalue if dim F)\ = 1.

The real number r(T) :=sup{|\| : A € o(T)} is called the spectral radius of T, and
1

may be computed from the formula 7(T) = lim,—,o. (|T7]) .

If |A| > 7(T") the resolvent can be expressed by the Neumann series

G
R(\T) = Y Av+bpn,
n=0

For more information we refer to Schaefer [1971], App. 1 and Reed-Simon [1972].
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B.18. The spaces C(X) and their duals M(X):
Let X be a compact space. The space C(X) of all real (resp. complex) valued
continuous functions on X becomes a Banach space if endowed with the norm

[ :=sup{|f(z)] v e X}, feC(X).

The dual of C(X), denoted M(X), is called the space of Radon measures on X.
By the theorem of Riesz (Bauer [1972], 7.5) M (X) is (isomorphic to) the set of all
regular real-(resp. complex-)valued Borel measures on X (see A.12).

The Dirac measures d,, © € X, defined by (0., f) := f(z) for all f € C(X), are
elements of M (X), and we obtain from Lebesgue’s dominated convergence theorem
(see A.16) the following:

If fr, f € C(X) with || f,,| < cforalln € N, then f,, converges to f for o(C(X), M (X))
if and only if {f,, 0,y — {f,d,) for all z € X.

B.19. Sequence spaces:
Let D be a set and take 1 < p < 00. The sequence space ¢P(D) is defined by

P (D) = {(Id)deD : Z |zalP < oo}

deD

where zp are real (or complex) numbers.

Analogously, we define
{*(D) := {(l‘d)dep s sup |zq| < oo}.
deD

The vector space ¢P(D), resp. £*(D), becomes a Banach space if endowed with the

norm
» 1/p
l@aaenll := (X leal”)
deD
resp. |(za)aepll := sup |zql.
deD

In our lectures, D equals N, Ny or Z. Instead of £P(D) we write ¢ if no confusion
is possible.

B.20. The LP(X,X, u):
Let (X,X, 1) be a measure space and take 1 < p < oo . By Z(X, 3, u) we denote
the vector space of all real- or complex-valued measurable functions on X with

§ [fIPdp < o0. Then
1/p
I i= (] 1117 an)

is a semi-norm on £P(X, X, i),
N,u = {f € gp(XaE7ﬂ“) : Hpr = 0}
and is a closed subspace. The quotient space
Lp(Xa 2, /~L) = Lp(/i) = gp(Xv %, ﬂ)/N#

endowed with the quotient norm is a Banach space. Analogously, one denotes by
L7 (X, %, 1) the vector space of p-essentially bounded measurable functions on X.
Again,

[flloe := {c € RT = p[| f] > c] = 0}
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yields a semi-norm on Z* (X, X, 1) and the subspace
Ny ={feZ"(X.Z.p) : |l = 0}
is closed. The quotient space
L7(X, 5, 1) = L7 (p) := L7 (X, 5, p) /Ny,
is a Banach space.

Even if the elements of LP(X, ¥, 1) are equivalence classes of functions it generally
causes no confusion if we calculate with the function f € £?(X, X, u) instead of its

equivalence class f € LP(X, %, 1) (see I1.D.4).

In addition, most operators used in ergodic theory are initially defined on the spaces
ZP(X, %, ). However, if they leave invariant N, we can and shall consider the
induced operators on LP(X, %, i)

B.21. For 1 < p < o the Banach space LP(X, X, 1) is separable if and only if the
measure algebra X is separable.

B.22. If the measure space (X, X, ) is finite, then
L™ () € LP2 () © LP (1) © L ()

for 1 <p; <p2 < 00.

B.23. Let (X,X, u) be o-finite. Then the dual of LP(X,X,u), 1 < p < o is
isomorphic to LY(X, X, ) where zl) + % = 1, and the canonical bilinear form is given
by

oy = [ £rgdu for fe L), g L)
Analogously, the dual of L () is isomorphic to L™ (u).

B.24. Conditional expectation:

Given a measure space (X, X, ) and a sub-o-algebra Xy € X, we denote by J
the canonical injection from LP(X, ¥, u) into LP(X, X, u) for 1 < p < 0. J is
contractive and positive (see C.4). Its (pre-)adjoint

P Lq(Xa 27 /J’) - Lq(X7 207 :u)
is a positive contractive projection satisfying

P(f-g)=g-P(f) for fe LU(X,%, pn), ge L™ (X, X0, n).

Proof. P is positive and contractive since J enjoys the same properties. The above
identity follows from

(P(f9) by = {fg, Thy = jfgh du = (f, T(gh))y = ((Pf)g,
for all (real) h € LP(X, X, ). ]

We call P the conditional expectation operator corresponding to . For its prob-
abilistic interpretation see Ash [1972], Ch. 6.
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B.25. Direct sums:
Let E;, i € N, be Banach spaces with corresponding norms |- |;, and let 1 < p < o0.
The ¢P-direct sum of (E;)en is defined by

b= @Ez = {(xi)ieN cx; € Ey foralli e Nand Y, [lzs]f < OO}~
P

F is a Banach space under the norm
1/p
I@aiend == (3 il
ieN
Given S; € Z(FE;) with sup,.y [|Si|| < oo, then
@D Si : (wi)ien = (Sixi)ien
is a bounded linear operator on E with | @ S;| = sup{||S;|| : i € N}. Analogously
one defines the ¢*-direct sum @ E;.



