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Appendix A. Some Topology and Measure Theory

(i) Topology

The concept of a topological space is so fundamental in modern mathematics that
we don’t feel obliged to recall its definitions or basic properties. Therefore we refer
to Dugundji 1966 for everything concerning topology, nevertheless we shall briefly
quote some results on compact and metric spaces which we use frequently.

A.1. Compactness:

A topological space (X, &), € the family of open sets in X, is called compact if it is
Hausdorff and if every open cover of X has a finite subcover. The second property
is equivalent to the finite intersection property: every family of closed subsets of
X, every finite subfamily of which has non-empty intersection, has itself non-empty
intersection.

A.2. The continuous image of a compact space is compact if it is Hausdorff. More-
over, if X is compact, a mapping ¢ : X — X is already a homeomorphism if it is
continuous and bijective. If X is compact for some topology & and if &” is another
topology on X, coarser than & but still Hausdorff, then & = &”.

A.3. Product spaces:

Let (X4)aca a non-empty family of non-empty topological spaces. The product
X :=|[,ea Xa becomes a topological space if we construct a topology on X start-
ing with the base of open rectangles, i.e. with sets of the form {z = (z4)aeca :
Zo,; € Oy, fori=1,...,n} for aq,...,a, € A, n € N and O, open in X,,. Then
Tychonov’s theorem asserts that for this topology, X is compact if and only if each
X,, a € A is compact.

A.4. Urysohn’s lemma:
Let X be compact and A, B disjoint closed subsets of X. Then there exists a
continuous function f: X — [0,1] with f(A) € {0} and f(B) < {1}.

A.5. Lebesgue’s covering lemma: If (X, d) is a compact metric space and « is
is a finite open cover of X, then there exists a § > 0 such that every set A € X
with diameter diam (A) < § is contained in some element of «.

A.6. Category: A subset A of a topological space X is called nowhere dense if

the closure of A, denoted by A, has empty interior: A = . A is called of first
category in X if A is the union of countably many nowhere dense subsets of X.
A is called of second category in X if it is not of first category. Now let X be a
compact or a complete metric space. Then Baire’s category theorem states that
every non-empty open set is of second category.

(i) Measure theory

Somewhat less elementary but even more important for ergodic theory is the con-
cept of an abstract measure space. We shall use the standard approach to measure-
and integration theory and refer to Bauer [1972] and Halmos [1950]. The advanced
reader is also directed to Jacobs [1978]. Although we again assume that the reader
is familiar with the basic results, we present a list of more or less known definitions
and results.
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A.7. Measure spaces and null sets:
A triple (X, X, ) is a measure space if X is a set, ¥ o-algebra of subsets of X and
(4 a measure on Y, i.e.

w:X— Ry u{o}
o-additive and and p(&) = 0.

If u(X) < oo (resp. u(X) = 1), X, %, u is called a finite measure space (resp. a
probability space); it is called o-finite, if X = |, .y An with pu(A,) < oo for all
n € N.

A set N € X is a p-null set if u(N) =0.

Properties, implications, conclusions etc. are valid “u-almost everywhere” or for
“almost all z € X7 if they are valid for all z € X\N where N is some p-null set.
If no confusion seems possible we sometimes write “... is valid for all £” meaning
“...is valid for almost all z € X”.

neN

A.8. Equivalent measures:

Let (X, X, 1) be a o-finite measure space and v another measure on X. v is called
absolutely continuous with respect to p if every p-null set is v-null set. v is equiv-
alent to p iff v is absolutely continuous with respect to p and conversely. The
measures which are absolutely continuous with respect to p can be characterized
by the Radon-Nikodym theorem (see Halmos [1950], §31).

A.9. The measure algebra:
In a measure space (X, X, u) the y-null sets form a o-ideal 4. The Boolean algebra

Si=%/N

is called the corresponding measure algebra. We remark that ¥ is isomorphic to
the algebra of characteristic functions in L*(X, X, 1) (see App.B.20) and therefore
is a complete Boolean algebra.

For two subsets A, B of X,

AAB :=(Au B)\(An B) =(A\B) u (B\A4)
denotes the symmetric difference of A and B, and
d(A, B) := u(AAB)
defines a semi-metric on X vanishing on ¥ the elements of .4/ (if u(X) < 00).
Therefore we obtain a metric on X still denoted by d.
A.10 Proposition: The measure algebra (E ,d) of a finite measure space X, 3, u

is a complete metric space.

Proof. 1t suffices to show that (3, d) is complete. For a Cauchy sequence (Ay)nen S
3, choose a subsequence (A, )ien such that d(Ag, 4;) < 27* for k,I > n;. Then

i

A= ﬂ;:l U]j:m Ay, is the limit of (A,). Indeed, with B,, := U: Ay, we have

j=m

8

d(Bp, An,) < Y p(An, \Ap) < D277 =227
i j=

m j=m
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and
v e o8}
d(A7 Bm) Z M B \Bj+1 Z + d(An; ) A’ﬂj+1) + d(Anj+17Bj+1))
j=m j=m
-
< > (2-277 4270 4 2.270FD) <827,
j=m
Therefore
d(A, Ag) < d(A, Bp) + d(Bm, An,,) + d(An,,, Ax) <11-27™
for k = n,,. =

A.11. For a subset W of ¥ we denote by a(V\[?) the Boolean algebra generated by
W, by J(W) the Boolean o-algebra generated by W W

Y is called countably generated, if there exists a countable subset W < ¥ such that
(W) = 3.

The metric d relates a(V\[?) and O’(l\/l//). More precisely, using an argument as in
(A.10) one can prove that in a finite measure space

o(W) =a(W) for every Wey

A.12. The Borel algebra:

In many applications a set X bears a topological structure and a measure space
structure simultaneously. In particular, if X is a compact space, we always take
the o-algebra % generated by the open sets, called the Borel algebra on X. The
elements of B are called Borel sets, and a measure defined on B is a Borel measure.
Further, we only consider regular Borel measures: here, p is called regular if for
every A € B and € > 0 there is a compact set K € A and an open set U 2 A such
that u(A\K) < e and p(U\A) < e.

A.13 Example:

Let X = [0,1][ be endowed with the usual topology. Then the Borel algebra B
is generated by the set of all dyadic intervals
={[k-27" (k+1)-27]:ieN;k=0,...,2" — 1}.
2 is called a separating base because it generates B and for any z,y € X, x # v,

there is D € & such that re D and y ¢ D, or z ¢ D and y € D.

A.14. Measurable mappings:

Consider two measure spaces (X, %, ) and (Y,7,v). A mapping ¢ : X - Y is
called measurable, if ~1(A) € X for every A € T, and called measure-preserving, if,
in addition, u(p~1(A)) = v(A) for all A € T for all A € T (abbreviated: pop=! = v).

For real-valued measurable functions f and g on (X, 3, 1), where R is endowed with
the Borel algebra, we use the following notation:

[fe B]:= f~Y(B) for BeB,
[f =gl ={reX: f(z) =g(x)},
[f <gl:i={reX: f(z) <g(x)}
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Finally,
1 if A
lg:z— 1 ve denotes the characteristic
0 ifz¢Ad
function of A € X. If A = X, we often write 1 instead of 1.

A.15. Continuous vs. measurable functions:

Let X be compact, B the Borel algebra on X and p a regular Borel measure.
Clearly, every continuous function f : X — C is measurable for the corresponding
Borel algebras. On the other hand there is a partial converse:

Theorem (Lusin): Let f: X — C be measurable and € > 0. Then there exists
a compact set A € X such that u(X\A) < ¢ and f is continuous on A.

Proof (Feldman [1981]): Let {U;}jen be a countable base of open subsets of C. Let
V; be open such that f~'(U;) € Vij and p(VV,\f~1(U;)) < 5277. If we take
B := U;L‘zl(Vj\ffl(Uj)), we obtain p(B) < §, and we show that g := f[pe is
continuous. To this end observe that
Vi n B =Vin (V\fTHU))" 0 B =V, n (VFu f71(U;)) n B
= Vi 0 f7HU;) 0 B® = f7H(U;) n B = g7 (U)).

Since any open subset U of C can be written as U = | J,c,, Uj, we have G(U) =
Ujenr 971(U5) = Ujens Vi 0 B, which is open in B°. Now we choose a compact
set A € B¢ with u(B°\A) < £, and conclude that f is continuous on A and that

W(X\A) = u(B) + p(B\A) < & .

A.16. Convergence of integrable functions:
Let (X,%, ) be a finite measure space and 1 < p < 0. A measurable (real)
function f on X is called p-integrable, if §|f|P du < oo (see Bauer [1972], 2.6.3).

For sequences (fy,)nen of p-integrable functions we have three important types of
convergence:
1. (fn)nen converges to f p-almost everywhere if

lim (fn(z) — f(x)) =0 for almost all z € X.
n—a0

2. (fn)nen converges to f in the p-norm if
lim | |[fn— fI]Pdp =0 see (B.20).
n—0

3. (fn)nen converges to f u-stochastically if
linjlC pllfn — fl = €] =0 forevery e > 0.

Proposition: Let (f,)neny be p-integrable functions and f be measurable.
(i) If f,, = f p-almost everywhere or in the p-norm, then f,, — f u-stochastically
(see Bauer [1972], 2.11.3 and 2.11.4).
(ii) If (fn)nen converges to f in the p-norm, then there exists a subsequence (fy, )
converging to f p-a.e. (see Bauer [1972], 2.7.5).
(iii) If (fn)nen converges to f p-a.e. and if there is a p-integrable function g such
that |f.(x)| < g(x) p-a.e., then f, — f in the p-norm and f is p-integrable
(Lebesgue’s dominated convergence theorem, see Bauer [1972], 2.7.4).

Simple examples show that in general no other implications are valid.



88

A.17. Product spaces:

Given a countable family (X, X4, tia)aca of probability spaces, we can consider the
cartesian product X = ||, ., and the so-called product o-algebra ¥ = &) c4 Xa
which is generated by the set of all measurable rectangles, i.e. sets of the form

Ray,.van(Aays - Aay) == {2 = (Ta)aea : Ta, € Ag, fori=1,...,n}
for aq,...,a,€ A, neN, A,, € X,,.

The well known extension theorem of Hahn-Kolmogorov implies that there exists
a unique probability measure p : ), 4 fta On X such that

U(Rah.--,an (Aal’ e 7Aan)) = 1_[ Mo (Aai)

for every measurable rectangle (see Halmos [1950], §383 Theorem B).
Then X, ¥, u is called the product (measure) space defined by (Xo, X, fta)aca

Finally, we mention an extension theorem dealing with a different situation (see
also Ash [1972], Theorem 5.11.2).

Theorem: Let (X,,)nez be a sequence of compact spaces, B, the Borel algebra
on X,,. Further, we denote by ¥ the product o-algebra on X =[], ., Xn, by Fp,
the set of all measurable sets in X whose elements depend only on the coordinates
—m,...,0,...,m. Finally we put .# = J,,ey Fm- If p is a function on .# such
that it is a regular probability measure on .%,, for each m € N, then p has a unique
extension to a probability measure on X.

Remark: Let ¢, : X = Y, = [[", X (2;)jez — (z—n,...,z,). Then we
assume above that v,(A) := u(p,1(A)), A measurable in Y,, defines a regular
Borel probability measure on Y, for every n € N.

Proof. The set function p has to be extended from .# to o(%#) = X. By the
classical Caratheodory extension theorem (see Bauer [1972], 1.5) it suffices to show
that lim;_,.. u(C;) = 0 for any decreasing sequence (C;);en of sets in & satisfying
(Nien Ci = . Assume that u(C;) > ¢ for all i € N and some € > 0. For each C;
there is an n € N such that C; € %, and A; € Y, with C; = ¢ 1(4;). Let B; a
closed subset of A; such that v, (A;\B;) < §-27%. Then D; := ¢;;'(B;) is compact
in X and pu(C;\D;) < §-27% Now the sets G := ﬂle D; form a decreasing
sequence of compact subsets of X, and we have

k
Gy € O and p(G) = p(Cr) = p(C\GR) = u(Ci) — (| J(CAD)

i=1

!

k
Z,u Ci\D;)
i=1

Hence G, # & and therefore (1),.y Cs, which contains (),.y G, is non-empty, a
contradiction. ]
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