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Appendix A. Some Topology and Measure Theory

(i) Topology

The concept of a topological space is so fundamental in modern mathematics that
we don’t feel obliged to recall its definitions or basic properties. Therefore we refer
to Dugundji 1966 for everything concerning topology, nevertheless we shall briefly
quote some results on compact and metric spaces which we use frequently.

A.1. Compactness:
A topological space pX,Oq, O the family of open sets in X, is called compact if it is
Hausdorff and if every open cover of X has a finite subcover. The second property
is equivalent to the finite intersection property : every family of closed subsets of
X, every finite subfamily of which has non-empty intersection, has itself non-empty
intersection.

A.2. The continuous image of a compact space is compact if it is Hausdorff. More-
over, if X is compact, a mapping ϕ : X Ñ X is already a homeomorphism if it is
continuous and bijective. If X is compact for some topology O and if O 1 is another
topology on X, coarser than O but still Hausdorff, then O � O 1.

A.3. Product spaces:
Let pXαqαPA a non-empty family of non-empty topological spaces. The product
X :�±

αPAXα becomes a topological space if we construct a topology on X start-
ing with the base of open rectangles, i.e. with sets of the form tx � pxαqαPA :
xαi P Oαi for i � 1, . . . , nu for α1, . . . , αn P A, n P N and Oαi open in Xαi . Then
Tychonov’s theorem asserts that for this topology, X is compact if and only if each
Xα, α P A is compact.

A.4. Urysohn’s lemma:
Let X be compact and A,B disjoint closed subsets of X. Then there exists a
continuous function f : X Ñ r0, 1s with fpAq � t0u and fpBq � t1u.

A.5. Lebesgue’s covering lemma: If pX, dq is a compact metric space and α is
is a finite open cover of X, then there exists a δ ¡ 0 such that every set A � X
with diameter diam pAq   δ is contained in some element of α.

A.6. Category: A subset A of a topological space X is called nowhere dense if
the closure of A, denoted by A, has empty interior: Å � H. A is called of first
category in X if A is the union of countably many nowhere dense subsets of X.
A is called of second category in X if it is not of first category. Now let X be a
compact or a complete metric space. Then Baire’s category theorem states that
every non-empty open set is of second category.

(ii) Measure theory
Somewhat less elementary but even more important for ergodic theory is the con-
cept of an abstract measure space. We shall use the standard approach to measure-
and integration theory and refer to Bauer [1972] and Halmos [1950]. The advanced
reader is also directed to Jacobs [l978]. Although we again assume that the reader
is familiar with the basic results, we present a list of more or less known definitions
and results.
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A.7. Measure spaces and null sets:
A triple pX,Σ, µq is a measure space if X is a set, Σ σ-algebra of subsets of X and
µ a measure on Σ, i.e.

µ : Σ Ñ R� Y t8u
σ-additive and and µpHq � 0.

If µpXq   8 (resp. µpXq � 1), X,Σ, µ is called a finite measure space (resp. a
probability space); it is called σ-finite, if X � �

nPN An with µpAnq   8 for all
n P N.

A set N � Σ is a µ-null set if µpNq � 0.

Properties, implications, conclusions etc. are valid “µ-almost everywhere” or for
“almost all x P X” if they are valid for all x P XzN where N is some µ-null set.
If no confusion seems possible we sometimes write “. . . is valid for all x” meaning
“. . . is valid for almost all x P X”.

A.8. Equivalent measures:
Let pX,Σ, µq be a σ-finite measure space and ν another measure on Σ. ν is called
absolutely continuous with respect to µ if every µ-null set is ν-null set. ν is equiv-
alent to µ iff ν is absolutely continuous with respect to µ and conversely. The
measures which are absolutely continuous with respect to µ can be characterized
by the Radon-Nikodỳm theorem (see Halmos [1950], §31).

A.9. The measure algebra:
In a measure space pX,Σ, µq the µ-null sets form a σ-ideal N . The Boolean algebraqΣ :� Σ{N
is called the corresponding measure algebra. We remark that qΣ is isomorphic to
the algebra of characteristic functions in L8pX,Σ, µq (see App.B.20) and therefore
is a complete Boolean algebra.

For two subsets A,B of X,

A4B :� pAYBqzpAXBq � pAzBq Y pBzAq
denotes the symmetric difference of A and B, and

dpA,Bq :� µpA4Bq
defines a semi-metric on X vanishing on Σ the elements of N (if µpXq   8).
Therefore we obtain a metric on qΣ still denoted by d.

A.10 Proposition: The measure algebra p qZ, dq of a finite measure space X,Σ, µ
is a complete metric space.

Proof. It suffices to show that pΣ, dq is complete. For a Cauchy sequence pAnqnPN �
Σ, choose a subsequence pAniqiPN such that dpAk, Alq   2�i for k, l ¡ ni. Then
A :� �8

m�1

�8
j�mAnj is the limit of pAnq. Indeed, with Bm :� �8

j�mAnj we have

dpBm, Anmq ¤
8̧

j�m
µpAnj�1zAnj q ¤

8̧

j�m
2�j � 2 � 2�m
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and

dpA,Bmq ¤
8̧

j�m
µpBjzBj�1q ¤

8̧

j�m

�
dpBj , Anj q � dpAnj , Anj�1q � dpAnj�1 , Bj�1q

�
¤

8̧

j�m

�
2 � 2�j � 2�j � 2 � 2�pj�1q� ¤ 8 � 2�m.

Therefore

dpA,Akq ¤ dpA,Bmq � dpBm, Anmq � dpAnm , Akq ¤ 11 � 2�m
for k ¥ nm.

A.11. For a subset |W of qΣ we denote by ap|W q the Boolean algebra generated by|W , by σp|W q the Boolean σ-algebra generated by |W .qΣ is called countably generated, if there exists a countable subset |W � qΣ such that
σp|W q � qΣ.
The metric d relates ap|W q and σp|W q. More precisely, using an argument as in
(A.10) one can prove that in a finite measure space

σp|W q � ap|W q
d

for every |W � qΣ
.

A.12. The Borel algebra:
In many applications a set X bears a topological structure and a measure space
structure simultaneously. In particular, if X is a compact space, we always take
the σ-algebra B generated by the open sets, called the Borel algebra on X. The
elements of B are called Borel sets, and a measure defined on B is a Borel measure.
Further, we only consider regular Borel measures: here, µ is called regular if for
every A P B and ε ¡ 0 there is a compact set K � A and an open set U � A such
that µpAzKq   ε and µpUzAq   ε.

A.13 Example:

Let X � r0, 1sr be endowed with the usual topology. Then the Borel algebra B
is generated by the set of all dyadic intervals

D :�  rk � 2�i, pk � 1q � 2�is : i P N; k � 0, . . . , 2i � 1
(
.

D is called a separating base because it generates B and for any x, y P X, x � y,
there is D P D such that x P D and y R D, or x R D and y P D.

A.14. Measurable mappings:
Consider two measure spaces pX,Σ, µq and pY, T, νq. A mapping ϕ : X Ñ Y is
called measurable, if ϕ�1pAq P Σ for every A P T , and called measure-preserving, if,
in addition, µpϕ�1pAqq � νpAq for allA P T for allA P T (abbreviated: µ�ϕ�1 � ν).

For real-valued measurable functions f and g on pX,Σ, µq, where R is endowed with
the Borel algebra, we use the following notation:

rf P Bs :� f�1pBq for B P B,
rf � gs � tx P X : fpxq � gpxqu,
rf ¤ gs :� tx P X : fpxq ¤ gpxqu.
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Finally,

1A : x ÞÑ
#

1 if x P A
0 if x R A denotes the characteristic

function of A � X. If A � X, we often write 1 instead of 1X .

A.15. Continuous vs. measurable functions:
Let X be compact, B the Borel algebra on X and µ a regular Borel measure.
Clearly, every continuous function f : X Ñ C is measurable for the corresponding
Borel algebras. On the other hand there is a partial converse:
Theorem (Lusin): Let f : X Ñ C be measurable and ε ¡ 0. Then there exists
a compact set A � X such that µpXzAq   ε and f is continuous on A.

Proof (Feldman [1981]): Let tUjujPN be a countable base of open subsets of C. Let
Vj be open such that f�1pUjq � V�j and µpV Vjzf�1pUjqq   ε

22�j . If we take
B :� �8

j�1pVjzf�1pUjqq, we obtain µpBq   ε
2 , and we show that g :� f |Bc is

continuous. To this end observe that

Vj XBc � Vj X pVjzf�1pUjqqc XBc � Vj X pV c
j Y f�1pUjqq XBc

� Vj X f�1pUjq XBc � f�1pUjq XBc � g�1pUjq.
Since any open subset U of C can be written as U � �

jPM Uj , we have G�1pUq ��
jPM g�1pUjq �

�
jPM Vj X Bc, which is open in Bc. Now we choose a compact

set A � Bc with µpBczAq   ε
2 , and conclude that f is continuous on A and that

µpXzAq � µpBq � µpBczAq   ε.

A.16. Convergence of integrable functions:
Let pX,Σ, µq be a finite measure space and 1 ¤ p   8. A measurable (real)
function f on X is called p-integrable, if

³ |f |p dµ   8 (see Bauer [1972], 2.6.3).

For sequences pfnqnPN of p-integrable functions we have three important types of
convergence:
1. pfnqnPN converges to f µ-almost everywhere if

lim
nÑ8pfnpxq � fpxqq � 0 for almost all x P X.

2. pfnqnPN converges to f in the p-norm if

lim
nÑ8

»
|fn � f |p dµ � 0 see (B.20).

3. pfnqnPN converges to f µ-stochastically if

lim
nÑ8µr|fn � f | ¥ εs � 0 for every ε ¡ 0.

Proposition: Let pfnqnPN be p-integrable functions and f be measurable.
(i) If fn Ñ f µ-almost everywhere or in the p-norm, then fn Ñ f µ-stochastically

(see Bauer [1972], 2.11.3 and 2.11.4).
(ii) If pfnqnPN converges to f in the p-norm, then there exists a subsequence pfnkq

converging to f µ-a.e. (see Bauer [1972], 2.7.5).
(iii) If pfnqnPN converges to f µ-a.e. and if there is a p-integrable function g such

that |fnpxq| ¤ gpxq µ-a.e., then fn Ñ f in the p-norm and f is p-integrable
(Lebesgue’s dominated convergence theorem, see Bauer [1972], 2.7.4).

Simple examples show that in general no other implications are valid.
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A.17. Product spaces:
Given a countable family pXα,Σα, µαqαPA of probability spaces, we can consider the
cartesian product X � ±

αPA and the so-called product σ-algebra Σ � Â
αPA Σα

which is generated by the set of all measurable rectangles, i.e. sets of the form

Rα1,...,αnpAα1 , . . . , Aαnq :�  
x � pxαqαPA : xαi P Aαi for i � 1, . . . , n

(
for α1, . . . , αn P A, n P N, Aαi P Σαi .

The well known extension theorem of Hahn-Kolmogorov implies that there exists
a unique probability measure µ :

Â
αPA µα on Σ such that

µpRα1,...,αnpAα1 , . . . , Aαnqq �
n¹
i�1

µαipAαiq

for every measurable rectangle (see Halmos [1950], §383 Theorem B).

Then X,Σ, µ is called the product (measure) space defined by pXα,Σα, µαqαPA
Finally, we mention an extension theorem dealing with a different situation (see
also Ash [1972], Theorem 5.11.2).

Theorem: Let pXnqnPZ be a sequence of compact spaces, Bn the Borel algebra
on Xn. Further, we denote by Σ the product σ-algebra on X � ±

nPZ Xn, by Fm

the set of all measurable sets in X whose elements depend only on the coordinates
�m, . . . , 0, . . . ,m. Finally we put F � �

mPN Fm. If µ is a function on F such
that it is a regular probability measure on Fm for each m P N, then µ has a unique
extension to a probability measure on Σ.

Remark: Let ϕn : X Ñ Yn :� ±n
�nXi; pxjqjPZ ÞÑ px�n, . . . , xnq. Then we

assume above that νnpAq :� µpϕ�1
n pAqq, A measurable in Yn, defines a regular

Borel probability measure on Yn for every n P N.

Proof. The set function µ has to be extended from F to σpF q � Σ. By the
classical Carathèodory extension theorem (see Bauer [1972], 1.5) it suffices to show
that limiÑ8 µpCiq � 0 for any decreasing sequence pCiqiPN of sets in F satisfying�
iPN Ci � H. Assume that µpCiq ¥ ε for all i P N and some ε ¡ 0. For each Ci

there is an n P N such that Ci P Fn and Ai � Yn with Ci � ϕ�1
n pAiq. Let Bi a

closed subset of Ai such that νnpAizBiq ¤ ε
2 � 2�i. Then Di :� ϕ�1

n pBiq is compact
in X and µpCizDiq ¤ ε

2 � 2�i. Now the sets Gk :� �k
i�1Di form a decreasing

sequence of compact subsets of X, and we have

Gk � Ck and µpGkq � µpCkq � µpCkzGkq � µpCkq � µ
� k¤
i�1

pCizDiq
	

¥ µpCkq �
ķ

i�1

µpCizDiq ¥ ε� ε

2
� ε

2
.

Hence Gk � H and therefore
�
iPN Ci, which contains

�
iPN Gi, is non-empty, a

contradiction.


