

6. Übung

- 25. Betrachte das Würfelwerfen. Mache dir die Aussagen der Gesetze der großen Zahlen auf diesem Beispiel klar!
- **26.** Satz von Borel: Eine Zahl $x \in [0, 1]$ heißt schwach 10-normal, falls in ihrer Dezimalform $x = 0, x_1 x_2 x_3 \dots$

jede Ziffer $0, 1, \ldots, 9$ asymptotisch mit gleicher Häufigkeit (also $\frac{1}{10}$) auftritt (wir vereinbaren, dass, falls die dezimale Darstellung nicht eindeutig ist, so wählen wir die, die mit $999\ldots$ endet). Genauer gesagt ist x schwach 10-normal falls:

$$\lim_{n \to \infty} \frac{\#\{x_i = j : 1 \le i \le n\}}{n} = \frac{1}{10}$$

für alle $j \in \{0, 1, 2, \dots, 9\}$ gilt.

- a) Gib Beispiele rationaler Zahlen $r \in \mathbb{Q}$ an, die 10-schwach normal sind.
- b) Zeige, dass fast alle $x \in [0,1]$ Zahlen schwach 10-normal sind. Hinweis: Identifiziere [0,1] mit $X = \{0,\ldots,9\}^{\mathbb{N}}$ und das Lebesgue-Maß mit einem Produktmaß auf X. Betrachte den Links-Shift auf X und verwende den individuelle Ergodensatz!
- c†) Zeige, dass fast alle $x \in [0,1]$ sind so, dass jede endliche Zifferkombination (von Länge k) in der Dezimalform von x mit asymptotischer Häufigkeit $\frac{1}{10^k}$ auftritt. Solche Zahlen nennt man 10-normal.
- d) Zeige: eine 10-normale Zahl ist irrational.
- 27. Konvergenz im Maß: Sei (Ω, \mathscr{A}, P) ein Wahrscheinlichkeitsmaßraum, $f_n, f: \Omega \to \mathbb{R}$ Zufallsvariablen und $1 \leq p < \infty$. Falls für jedes $\varepsilon > 0$ gilt

$$P(\lbrace x \in \Omega : |f(x) - f_n(x)| > \varepsilon \rbrace) \to 0 \text{ für } n \to \infty,$$

so heißt f_n konvergent gegen f im Ma β .

a) Beweise die Markov-Ungleichung: für jedes $\varepsilon > 0$ gilt

$$P(\{x \in \Omega : |f(x)| > \varepsilon\}) \le \frac{\int |f| dP}{\varepsilon}.$$

- b) Zeige, dass $f_n \to f$ in $L^p(\Omega, \mathcal{A}, p)$ impliziert $f_n \to f$ in Maß.
- c) Zeige, dass keine die Implikationen unter b) und e) ist umkehrbar. Hinweis: Betrachte $f_n := n \cdot \chi_{[0,1/n)}!$
- d) Satz von Egorov: Sei $f_n \to f$ fast überall. Dann existiert für jedes $\delta > 0$ eine Menge $A \in \mathscr{A}$ mit $\mu(\Omega \setminus A) < \delta$ und $f_n \to f$ gleichmäßig auf A. Beweise diese Aussage! Hinweis: Für $n, k \in \mathbb{N}$ setze $A_{m,k} := \{x \in \Omega : |f_n(x) f(x)| \ge \frac{1}{k}$ für alle $n \ge m\}$. Zeige $\mu(\bigcup_{m \in \mathbb{N}} A_{m,k}) = 1$ und somit $\lim_{m \to \infty} \mu(\Omega \setminus A_{m,k}) = 0$! Finde eine Teilfolge $(m_k) \subseteq \mathbb{N}$ mit $A := \bigcap_{k \in \mathbb{N}} A_{m_k,k}$, $\mu(\Omega \setminus A) < \delta$!
- e) Satz von Lebesgue: Zeige, dass $f_n \to f$ fast überall impliziert $f_n \to f$ in Maß. Hinweis: verwende den Satz von Egorov!
- f) Wieder ein Lemma von Riesz: Sei $f_n \to f$ im Maß, so existiert eine Teilfogle (f_{n_k}) mit $f_{n_k} \to f$ fast überall. Zeige: für jedes $\varepsilon > 0$ existiert n_0 , so dass $P(\{x \in \Omega : |f_n(x) f_m(x)| > \varepsilon\}) < \varepsilon$ für alle $n, m \ge n_0$. Sei $n_k \in \mathbb{N}$, so dass mit $A_k := \{x \in \Omega : |f_{n_k}(x) f_{n_{k+1}}(x)| > 1/2^k\}$ gilt $\mu(A_k) < 1/2^k$, und setze $A := \bigcap_{k=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$. Bestimme $\mu(\Omega \setminus A)$ und zeige, dass für $x \in A$ konvergiert $f_{n_k}(x)$.
- **28.** Seien (X, Σ, μ) und (Ω, \mathscr{A}, P) Wahrscheinlichkeitsmaßräume und $\Phi: L^1(\mu) \to L^1(P)$ ein positiver, isometrischer Linearoperator.
- a) Zeige, dass eine Folge messbarer Funktionen genau dann fast überall konvergent ist, wenn

$$\sup_{n\in\mathbb{N}}\inf_{k\geq n}f_k=\inf_{n\in\mathbb{N}}\sup_{k\geq n}f_k\quad \text{gilt.}$$

b) Verwende a) um zu zeigen, dass $\Phi(f_n) \to \Phi(f)$ P-fast überall, wenn $f_n \to f$ μ -fast überall. Hinweis: $f \leq g \iff \Phi(f) \leq \Phi(g)!$