Fachbereich Mathematik Prof. J. Lehn Hasan Gündoğan, Nicole Nowak

Sommersemester 2008 17./18./21. April

3. Übungsblatt zur "Mathematik II für BI, MaWi, WI(BI), AngGeo"

Gruppenübung

Aufgabe G6 (Matrixoperationen)

Berechnen Sie für

$$A = \begin{pmatrix} 4 & -1 \\ -2 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & -1 \end{pmatrix} \text{ und } C = \begin{pmatrix} -1 & 2 \\ 3 & 0 \\ 0 & 1 \end{pmatrix}$$

die Produkte AB, AC, BC, BA, CA und AC^T , falls diese definiert sind. Welche der Summen A + B, A + C und B + C können Sie bilden?

Lösung

- (1) AB: nicht möglich, denn die Anzahl der Spalten von A stimmt nicht mit der Zeilenanzahl von B überein.
- (2) AC: nicht möglich.
- (3) BC: möglich, "Zeile mal Spalte".

$$BC = \left(\begin{array}{ccc} 2 \cdot (-1) + 1 \cdot 3 + (-1) \cdot 0 & 2 \cdot 2 + 1 \cdot 0 + (-1) \cdot 1 \end{array} \right) = \left(\begin{array}{ccc} 1 & 3 \end{array} \right)$$

- (4) BA: nicht möglich.
- (5) CA: möglich.

$$CA = \begin{pmatrix} (-1) \cdot 4 + 2 \cdot (-2) & (-1) \cdot (-1) + 2 \cdot 1 \\ 3 \cdot 4 + 0 \cdot (-2) & 3 \cdot (-1) + 0 \cdot 1 \\ 0 \cdot 4 + 1 \cdot (-2) & 0 \cdot (-1) + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} -8 & 3 \\ 12 & -3 \\ -2 & 1 \end{pmatrix}$$

(6) AC^T : möglich.

$$AC^{T} = \begin{pmatrix} 4 \cdot (-1) + (-1) \cdot 2 & 4 \cdot 3 + (-1) \cdot 0 & 4 \cdot 0 + (-1) \cdot 1 \\ (-2) \cdot (-1) + 1 \cdot 2 & (-2) \cdot 3 + 1 \cdot 0 & (-2) \cdot 0 + 1 \cdot 1 \end{pmatrix}$$
$$= \begin{pmatrix} -6 & 12 & -1 \\ 4 & -6 & 1 \end{pmatrix}$$

Keine der Summen kann gebildet werden. Die Dimensionen stimmen nicht überein.

Aufgabe G7 (Inverse Matrix und lineare Gleichungssysteme) Sei

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & -3 \end{pmatrix} \text{ und } b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- (i) Berechnen Sie, falls möglich, die Inverse von A.
- (ii) Berechnen Sie die Determinante von A.
- (iii) Bestimmen Sie die Lösung des linearen Gleichungssystems Ax = b mit Hilfe des Gauß-Algorithmus. Bestimmen Sie die Lösung nun auch mit Hilfe der in (i) bestimmten Inversen von A.

Lösung:

(i) Mit elementaren Zeilenumformungen (Gauß-Jordan-Elimination) angewandt auf (A, E) erhält man (E, A^{-1}) .

$$\begin{pmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 2 & 0 & 2 & 0 & 1 & 0 \\ -1 & 1 & -3 & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 4 & 0 & -2 & 1 & 0 \\ -1 & 1 & -3 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 4 & 0 & -2 & 1 & 0 \\ 0 & -1 & -2 & 1 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{4} & 0 \\ 0 & -1 & -2 & 1 & 1 & 0 & 1 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & -2 & \frac{1}{2} & \frac{1}{4} & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & 1 & -\frac{1}{4} & -\frac{1}{8} & -\frac{1}{2} \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 1 & 0 & 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & 1 & -\frac{1}{4} & -\frac{1}{8} & -\frac{1}{2} \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{4} & \frac{5}{8} & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & 1 & -\frac{1}{4} & -\frac{1}{8} & -\frac{1}{2} \end{pmatrix}$$

Also ist

$$A^{-1} = \frac{1}{8} \left(\begin{array}{ccc} 2 & 5 & 4 \\ -4 & 2 & 0 \\ -2 & -1 & -4 \end{array} \right).$$

(ii) Die Determinante von A lässt sich z.B. durch Entwickeln nach der dritten Spalte berechnen:

$$\det A = 1(0-2) - (-2)(2(-3) - 2(-1)) + 1(2-0) = -2 - 8 + 2 = -8.$$

(iii) Anwendung des Gauß-Algorithmus ergibt

$$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 2 & 0 & 2 & 1 \\ -1 & 1 & -3 & 1 \end{pmatrix} \xrightarrow{II - 2I} \begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & 4 & -0 & -1 \\ 0 & -1 & -2 & 2 \end{pmatrix}$$

$$III + \frac{1}{4}II \quad \begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & 4 & 0 & -1 \\ 0 & 0 & -2 & \frac{7}{4} \end{pmatrix}$$

Durch Rückwärtseinsetzen erhalten wir $x_3 = -\frac{7}{8}$, $x_2 = -\frac{1}{4}$ und $x_1 = \frac{11}{8}$. Dasselbe Ergebnis erhält man schneller, wenn man die in (i) berechnete inverse Matrix A^{-1} auf b anwendet: $x = A^{-1}b$.

Aufgabe G8 (Lösbarkeit linearer Gleichungssysteme)

Überprüfen Sie, ob die folgenden linearen Gleichungssysteme

$$x_1 + 2x_2 + 3x_3 = 0$$
 $x_1 + 2x_3 = 1$
 $2x_1 + 4x_2 + 6x_3 = 0$ und $3x_1 + 2x_2 + x_3 = 0$
 $3x_1 + 6x_2 + 9x_3 = 0$ $4x_1 + x_2 + 3x_3 = 0$

lösbar sind. Bestimmen Sie jeweils auch den Lösungsraum.

Lösung:

(1) Die Koeffizientenmatrix A und die erweiterte Matrix (A, b) des ersten Gleichungssystems sind

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}, \qquad (A,b) = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 6 & 0 \\ 3 & 6 & 9 & 0 \end{pmatrix}.$$

Da die Zeilen Vielfache voneinander sind, gilt Rang(A) = 1 und Rang(A, b) = 1. Also ist das Gleichungssystem lösbar.

Durch elementare Zeilenumformungen ergibt sich

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 2 & 4 & 6 & 0 \\ 3 & 6 & 9 & 0 \end{array} \right) \quad \stackrel{II-2I}{\leadsto} \quad \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 3 & 6 & 9 & 0 \end{array} \right) \quad \stackrel{III-3I}{\leadsto} \quad \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

Durch Rückwärtseinsetzen erhält man

$$x_3 = t,$$

$$x_2 = s,$$

$$x_1 = -2s - 3t$$

für $s, t \in \mathbb{R}$. Der Lösungsraum dieses LGS ist also

$$L_1 = \left\{ s \cdot \begin{pmatrix} -2\\1\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -3\\0\\1 \end{pmatrix}, \ s, t \in \mathbb{R} \right\}.$$

(2) Beim zweiten Gleichungssystem sind

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 4 & 1 & 3 \end{pmatrix}, \qquad (A,b) = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 3 & 2 & 1 & 0 \\ 4 & 1 & 3 & 0 \end{pmatrix}.$$

Elementare Zeilenumformungen ergeben

$$\begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 4 & 1 & 3 \end{pmatrix} \xrightarrow{II - 3I} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & -5 \\ 4 & 1 & 3 \end{pmatrix} \xrightarrow{III - 4I} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & -5 \\ 0 & 1 & -5 \end{pmatrix}$$

$$III - \frac{1}{2}II \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & -5 \\ 0 & 0 & -\frac{5}{2} \end{pmatrix}.$$

Damit ist $\operatorname{Rang}(A) = 3$. Aus $\operatorname{Rang}(A) \leq \operatorname{Rang}(A, b) \leq 3$ folgt $\operatorname{Rang}(A, b) = 3$. Damit ist das LGS eindeutig lösbar. Um die Lösung zu bestimmen, wenden wir dieselben elementaren

Zeilenumformungen an auf die erweiterte Koeffizientenmatrix.

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 3 & 2 & 1 & 0 \\ 4 & 1 & 3 & 0 \end{pmatrix} \xrightarrow{II - 3I} \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -5 & -3 \\ 4 & 1 & 3 & 0 \end{pmatrix}$$

$$III - 4I \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -5 & -3 \\ 0 & 1 & -5 & -4 \end{pmatrix} \xrightarrow{III - \frac{1}{2}II} \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -5 & -3 \\ 0 & 0 & -\frac{5}{2} & -\frac{5}{2} \end{pmatrix} .$$

Rückwärtseinsetzen ergibt

$$-\frac{5}{2}x_3 = -\frac{5}{2} \implies x_3 = 1,$$

$$2x_2 - 5 = -3 \implies x_2 = 1,$$

$$x_1 + 2 = 1 \implies x_1 = -1.$$

Somit ist

$$L_2 = \left\{ \left(\begin{array}{c} -1\\1\\1 \end{array} \right) \right\}.$$

Hausübung

Aufgabe H7 (Matrixoperationen)

(4 Punkte)

a) Wir betrachten

$$A = \begin{pmatrix} 4 & -1 \\ -2 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 2 \\ 3 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } D = \begin{pmatrix} 7 \\ 4 \end{pmatrix}.$$

Berechnen Sie $(BC) \cdot (-AD + 3D)$.

b) Berechnen Sie die Produkte EF und E^TF für

$$E = \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \quad \text{und} \quad F = \begin{pmatrix} 0 & 1 \\ -5 & 4 \end{pmatrix}.$$

Lösung:

a) Man erhält erhält $BC = (1\ 3)$. Weiterhin ist $AD = \begin{pmatrix} 24 \\ -10 \end{pmatrix}$ und somit $-AD + 3D = \begin{pmatrix} -3 \\ 22 \end{pmatrix}$. Insgesamt ergibt sich $(BC) \cdot (-AD + 3D) = 63$.

b)
$$EF = \begin{pmatrix} 5 & -2 \\ -5 & 2 \end{pmatrix}$$
 und $E^TF = \begin{pmatrix} 10 & -6 \\ -5 & 3 \end{pmatrix}$.

Aufgabe H8 (Gauß-Algorithmus, Inverse)

(5 Punkte)

Berechnen Sie mittels des Gauß-Algorithmuses die Inverse der Matrix A und bestimmen Sie anschließend die Lösung des Gleichungssystemes Ax = b.

$$A = \begin{pmatrix} 1 & 0 & 3 & 2 \\ -1 & 2 & 1 & -2 \\ 2 & 1 & 0 & 4 \\ 3 & -2 & 1 & 2 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}.$$

1	0	3	2	1	0	0	0	
-1	$\frac{\circ}{2}$	1	-2	0	1	0	0	Z2 + Z1
2	1	0	4	0	0	1	0	Z3 - 2Z1
3	-2	1	2	0	0	0	1	Z4 - 3Z1
1	0	3	2	1	0	0	0	21
0	$\overset{\circ}{2}$	4	0	1	1	0	0	
0	1	-6	0	-2	0	1	0	2Z3 - Z2
0	-2	-8	-4	-3	0	0	1	Z4 + Z2
1	0	3	2	1	0	0	0	1,
0	2	4	0	1	1	0	0	
0	0	-16	0	-5	-1	2	0	
0	0	-4	-4	-2	1	0	1	4Z4 - Z3
1	0	3	2	1	0	0	0	
0	2	4	0	1	1	0	0	Z2/2
0	0	-16	0	-5	-1	2	0	Z3/(-16)
0	0	0	-16	-3	5	-2	4	Z4/(-16)
1	0	3	2	1	0	0	0	Z1 - 3Z3
0	1	2	0	1/2	1/2	0	0	Z2 - 2Z3
0	0	1	0	5/16	1/16	-2/16	0	Z2 - 2Z3
0	0	0	1	3/16	-5/16	2/16	-4	1/16
1	0	0	2	1/16	-3/16	6/16	0	Z1 - 2Z4
0	1	0	0	-2/16	6/16	4/16	0	
0	0	1	0	5/16	1/16	-2/16	0	
0	0	0	1	3/16	-5/16	2/16	-4	:/16
1	0	0	0	-5/16	7/16	2/16	8/3	16
0	1	0	0	-2/16	6/16	4/16	0	
0	0	1	0	5/16	1/16	-2/16	0	
0	0	0	1	3/16	-5/16	2/16	-4	:/16

Daher

Lösung:

$$A^{-1} = \frac{1}{16} \begin{pmatrix} -5 & 7 & 2 & 8 \\ -2 & 6 & 4 & 0 \\ 5 & 1 & -2 & 0 \\ 3 & -5 & 2 & -4 \end{pmatrix}$$

und $\vec{x} = A^{-1}\vec{b} = \frac{1}{16}(-4, 8, 4, 4)^T$.

Aufgabe H9 (Vermischtes)

(6 Punkte)

(a) Sei $A \in \mathbb{R}^{3\times 3}$ gegeben durch

$$A = \begin{pmatrix} 9 & 6 & 3 \\ -3 & -2 & \mu \\ 6 & 4 & 2 \end{pmatrix}$$

mit $\mu \in \mathbb{R}$.

Bestimmen Sie den Rang von A in Abhängigkeit von μ .

- (b) Ist das Produkt zweier symmetrischer Matrizen wieder symmetrisch? Begründen Sie Ihre Antwort!
- (c) Zeigen Sie, dass für jede quadratische Matrix A mit reellen Einträgen gilt: $A+A^T$ ist eine symmetrische Matrix. Nutzen Sie hierfür die Rechenregeln für Matrixaddition und für das Transponieren.

Lösung:

(a) Rangbestimmung:

Im folgenden bezeichnen S1, S2, S3 die Spalten 1 bis 3 der Matrix und Z1, Z2, Z3 die Zeilen 1 bis 3.

D.h. für $\mu = -1$ gilt rang(A) = 1 und für $\mu \neq -1$ gilt rang(A) = 2.

- (b) Nein, ein Beispiel wäre $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- (c) Es gilt $(A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T$.

Die erste und zweite Gleichheit gilt nach den Rechenregeln fürs Transponieren, die letzte Gleichheit gilt, da Matrixaddition kommutativ ist. Da nach der Gleichungskette gilt $(A + A^T)^T = A + A^T$, ist $A + A^T$ symmetrisch.