## Fachbereich Mathematik

Martin Otto Benno van den Berg



# 9. Übungsblatt Formale Grundlagen der Informatik II SS 2008

(E9.1)

- (a) Leiten Sie die folgenden Sequenzen her:
  - (i)  $\forall x R x f x \vdash \exists x R f x f f x$
  - (ii)  $\forall x \forall y (Rxy \lor Py), \exists x \neg Px \vdash \exists x \forall y Ryx$
- (iii)  $\forall x f x x = x \vdash \forall x (Px \lor \neg P f x x)$
- (b) Beweisen Sie die Korrektheit der folgenden Regel:

$$\frac{\Gamma \vdash \Delta, \forall x R x f x}{\Gamma \vdash \Delta, \forall x \exists y R x y}$$

Beachten Sie, daß sich diese Regel nicht in  $\mathcal{SK}^{\neq}$  (auch nicht in  $\mathcal{SK}$ ) herleiten läßt (warum?).

# Musterlösung.

(a) (i)

$$\frac{Rfcffc \vdash Rfcffc}{\forall xRxfx \vdash Rfcffc} \\ \hline \forall xRxfx \vdash \exists xRfxffx}$$

(ii)

$$\frac{Rac, \neg Pc \vdash Rac}{Rac \lor Pc, \neg Pc \vdash Rac} \frac{Pc \vdash Pc}{Pc, \neg Pc \vdash}$$

$$\frac{Rac \lor Pc, \neg Pc \vdash Rac}{\forall y (Ray \lor Py), \neg Pc \vdash Rac}$$

$$\frac{\forall x \forall y (Rxy \lor Py), \neg Pc \vdash Rac}{\forall x \forall y (Rxy \lor Py), \neg Pc \vdash \forall y Ryc}$$

$$\frac{\forall x \forall y (Rxy \lor Py), \neg Pc \vdash \exists x \forall y Ryx}{\forall x \forall y (Rxy \lor Py), \exists x \neg Px \vdash \exists x \forall y Ryx}$$

(iii)

$$\frac{\overline{Pc \vdash Pc}}{fcc = c, Pfcc \vdash Pc}$$

$$\frac{\forall x fxx = x, Pfcc \vdash Pc}{\forall x fxx = x \vdash Pc, \neg Pfcc}$$

$$\frac{\forall x fxx = x \vdash Pc \lor \neg Pfcc}{\forall x fxx = x \vdash \forall x (Px \lor \neg Pfxx)}$$

(b) Angenommen,  $\Gamma \vdash \Delta$ ,  $\forall x Rx fx$  ist allgemeingültig. Um zu zeigen, dass dann auch die Sequenz  $\Gamma \vdash \Delta$ ,  $\forall x \exists y Rxy$  allgemeingültig ist, betrachten wir ein Modell  $\mathfrak{J} \models \Gamma$ . Nach Voraussetzung gibt es dann eine Formel  $\delta \in \Delta \cup \{\forall x Rx fx\}$  mit  $\mathfrak{J} \models \delta$ . Falls  $\delta \in \Delta$ , so sind wir fertig. Falls  $\mathfrak{J} \models \forall x Rx fx$ , dann gilt auch  $\mathfrak{J} \models \forall x \exists y Rxy$  und wir sind ebenfalls fertig.

#### (E9.2)

- (a) Zeigen Sie, daß die folgenden Sequenzen ableitbar sind:
  - (i)  $\exists y \forall x Rxy \vdash \forall x \exists y Rxy$
  - (ii)  $\forall x(\varphi \lor \psi) \vdash \forall x\varphi \lor \forall x\psi$ , vorausgesetzt, daß  $x \notin \text{frei}(\psi)$ .
- (b) Beweisen Sie die Korrektheit der folgenden Regel:

$$\frac{\Gamma, \varphi(c/x) \vdash \Delta, \psi(c/x)}{\Gamma \vdash \Delta, \forall x (\varphi \to \psi)} \quad \text{wobei } c \text{ nicht in } \Gamma, \Delta, \varphi, \psi \text{ vorkommt.}$$

(c) Was geht schief, wenn man in den Regeln ( $\forall R$ ) und ( $\exists L$ ) die Bedingung wegläßt, daß die Konstante nirgendwo vorkommt? Finden sie eine ungültige Sequenz, die man mit den liberaleren Regeln ableiten kann.

## Musterlösung.

(a) (i)

(ii) Beachte, daß  $\psi(c/x) = \psi$  ist, da  $x \notin \text{frei}(\psi)$ .

$$\frac{\varphi(c/x) \vdash \varphi(c/x), \psi}{\varphi(c/x) \vdash \varphi(c/x), \psi} (Ax) \qquad \frac{\varphi(c/x) \lor \psi \vdash \varphi(c/x), \psi}{\psi x (\varphi \lor \psi) \vdash \varphi(c/x), \psi} (\forall L) \frac{\forall x (\varphi \lor \psi) \vdash \varphi(c/x), \psi}{\forall x (\varphi \lor \psi) \vdash \forall x \varphi, \psi} (\forall R) \frac{\forall x (\varphi \lor \psi) \vdash \forall x \varphi, \forall x \psi}{\forall x (\varphi \lor \psi) \vdash \forall x \varphi \lor \forall x \psi} (\lor R)$$

(b) Angenommen, die Sequenz  $\Gamma, \varphi(c/x) \vdash \Delta, \psi(c/x)$  ist allgemeingültig. Wir müssen zeigen, daß dann auch die Sequenz  $\Gamma \vdash \Delta, \forall x (\varphi \to \psi)$  algemeingültig ist. Sei also  $\mathfrak{J} = (\mathcal{A}, \beta)$  eine Interpretation mit  $\mathfrak{J} \models \Gamma$ . Falls  $\mathfrak{J} \models \bigvee \Delta$ , dann sind wir fertig. Angenommen,  $\mathfrak{J} \not\models \bigvee \Delta$ . Wir müssen zeigen, daß  $\mathfrak{J} \models \forall x (\varphi \to \psi)$ . Nehmen wir an, daß dies nicht der Fall ist. Dann gibt es ein Element  $a \in A$ , so daß  $(\mathcal{A}, \beta[x \mapsto a]) \models \varphi \land \neg \psi$ . Sei  $\mathfrak{J}'$  die Interpretation, welche der Konstanten c den Wert a zuweist. Dac nicht in  $\Gamma, \Delta, \varphi, \psi$  vorkommt, gilt

$$\mathfrak{J}' \models \bigwedge \Gamma$$
,  $\mathfrak{J}' \not\models \bigvee \Delta$ ,  $\mathfrak{J}' \models \varphi(c/x)$ ,  $\mathfrak{J}' \not\models \psi(c/x)$ .

Also ist  $\mathfrak{J}'$  ein Gegenbeispiel zur Allgemeingültigkeit der Regel  $\Gamma, \varphi(c/x) \vdash \Delta, \psi(c/x)$ . Widerspruch.

(c)

$$\frac{\frac{\overline{\varphi(c)} \vdash \varphi(c)}{\varphi(c)}}{\frac{\varphi(c)}{\exists x \varphi(x)} \vdash \forall x \varphi(x)} (Ax) (\forall R)$$

$$(\exists L)$$