Fachbereich Mathematik

Martin Otto Benno van den Berg

2. Übungsblatt Formale Grundlagen der Informatik II SS 2008

(E2.1)

- (a) Beweisen oder widerlegen Sie die folgende Aussagen.
 - (i) $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
 - (ii) Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
 - (iii) Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
 - (iv) $\{\varphi, \psi\} \models \vartheta$ genau dann, wenn $\varphi \models \vartheta$ oder $\psi \models \vartheta$.
- (b) Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.
 - (i) $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
 - (ii) $\neg(\varphi \lor \psi) \equiv \neg\varphi \lor \neg\psi$
 - (iii) $\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$
 - (iv) $\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$

(E2.2)

Wir versuchen, ein verteiltes System in der Aussagenlogik zu modellieren. Angenommen wir wollen n Prozesse für s Zeiteinheiten beobachten. Jeder Prozeß kann sich an jedem Zeitpunkt im Zustand p, q oder r befinden. Wir führen Aussagenvariablen p_t^i , q_t^i und r_t^i ein, die auf wahr gesetzt werden, wenn Prozeß i zur Zeit t im entsprechenden Zustand ist. Formalisieren Sie die folgenden Aussagen in AL:

- (a) Zu jedem Zeitpunkt ist höchstens ein Prozeß in Zustand q.
- (b) Es sind immer mindestens zwei Prozesse in Zustand p.
- (c) Wenn sich ein Prozeß in Zustand q befindet, dann wechselt er nach spätestens 3 Zeiteinheiten in den Zustand r.

(a) Für Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jedes Modell, das alle Formeln $\varphi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

(b) Eine Interpretation $\mathcal{I}: \mathcal{V} = \{p_1, p_2, \ldots\} \to \mathbb{B}$ kann aufgefasst werden als eine unendliche Bit-Sequenz. P sei irgendeine Teilmenge aller solchen Sequenzen, \overline{P} das Komplement von P. Wir betrachten ein P, so dass sowohl P als auch \overline{P} durch (unendliche) AL-Formelmengen spezifiziert werden können, in dem Sinne, dass

$$P = \{\mathcal{I} : \mathcal{I} \models \Phi\}$$

$$\overline{P} = \{ \mathcal{I} : \mathcal{I} \models \Psi \}$$

für geeignete $\Phi, \Psi \subseteq AL(\mathcal{V})$.

Zeigen Sie, dass dann sowohl P als auch \overline{P} sogar schon durch einzelne AL-Formeln φ und ψ spezifiziert werden können (und also nur von endlichen Abschnitten der Sequenzen abhängen können).