Einführung in die Stochastik

7. Übung

Gruppenübung: 13./14.05.2008 Abgabe Hausübung: 19./20.05.2008 Lösungsvorschlag

Gruppenübung

G 10 Seien $a, b \in \mathbb{N}$ und sei

$$D(0,T) = \{(s_0, \dots, s_T) \in \mathbb{Z}^{T+1} : \forall t \in \{1, \dots, T\} : |s_t - s_{t-1}| \le 1\}$$

die Menge aller Pfade, die von 0 nach T verlaufen.

Zeigen Sie: Die Anzahl $L_0(a, b)$ der Pfade von a nach b mit mindestens einer Nullstelle ist gleich der Anzahl der Pfade L(-a, b) von -a nach b.

Sei $0 < k_1 < k_2 \le T$ und definieren

$$D(k_1, k_2) = \{(s_{k_1}, \dots, s_{k_2}) \in \mathbb{Z}^{k_2 - k_1 - 1} : \forall t \in \{k_1 + 1, \dots, k_2\} : |s_t - s_{t-1}| \le 1\}$$

Wir betrachten einen Pfad $(s_{k_1},\ldots,s_{k_2})\in D(k_1,k_2)$ mit $s_{k_1}=a,\ldots,s_k=0,\ldots,s_{k_2}=b$, wobei $k\in\{k_1,\ldots,k_2\}$ der kleinste Index mit $s_k=0$ ist. Es gilt demnach $s_{k_1}\geq 0,\,s_{k_1+1}>0,\ldots,s_{k-1}>0,\,s_k=0$.

Spiegeln wir diesen Teil an der x-Achse, so erhalten wir einen neuen Pfad in $D(k_1, k_2)$ $(-s_{k_1}, -s_{k_1+1}, \ldots, s_k = 0, s_{k+1}, \ldots, S_T)$, der von -a nach b läuft. Es gibt also eine eindeutige Abbildung der Pfade von a nach b mit mindestesn einer Nullstelle auf die Pfade von -a nach b. Damit ist die Behauptung bewiesen.