

WS 03/04 01. 02. 08 AG 06, FB Mathematik Tech. Univ. Darmstadt

Partial Differential Equations I: Linear Theory Solutions to the Exercises of Tutorial 14

1. Proof. Let Ω_1 , Ω_2 be bounded open sets of \mathbb{R}^n with $n \in \mathbb{N}$ satisfying

$$\Omega_1 \subset \Omega_2$$
.

We want to prove that an function f in $\overset{\circ}{C}_{\infty}(\Omega_1)$ can be extended, by 0, to $\hat{f} \in \overset{\circ}{C}_{\infty}(\Omega_2)$. To this end, we choose $f \in \overset{\circ}{C}_{\infty}(\Omega_1)$. This mean f vanished near the boundary of Ω_1 say f(x) = 0 for any $x \in \Omega_1^{\delta}$, where $\Omega_1^{\delta} = \{x \in \Omega_1 \mid \operatorname{dist}(x, \partial \Omega_1) \leq \delta\}$, for suitably small positive δ . Thus if we define $\hat{f}(x) = 0$ for any $x \in \Omega_1^{\delta} \cup (\Omega_2 \setminus \Omega_1)$, then one can easily prove that $\hat{f} \in \overset{\circ}{C}_{\infty}(\Omega_2)$.

Recalling that $\mathring{H}_1(\Omega_1)$ is the closure of $\mathring{C}_{\infty}(\Omega)$ in the $H_1(\Omega)$ -norm, we conclude that for any $u \in \mathring{H}_1(\Omega_1)$, define a function $\hat{u}: \Omega_2 \to \mathbb{C}$ by

$$\hat{u}(x) = \begin{cases} u(x), & x \in \Omega_1, \\ 0, & x \in \Omega_2 \setminus \Omega_1 \end{cases}$$

then we have that \hat{u} belongs to $\overset{\circ}{H}_1(\Omega_2)$.

2. Proof. Define $B(u,v) = (\nabla_x u, \nabla_x v)$. Invoking the conclusion in Problem 1, we obtain

$$\lambda_{1}(\Omega_{2}) = \min_{\substack{u \in \mathring{H}_{1}(\Omega_{2}), ||u||_{L_{2}(\Omega_{2})} = 1}} B(u, u)
\leq \min_{\substack{u \in \mathring{H}_{1}(\Omega_{1}), ||u||_{L_{2}(\Omega_{1})} = 1}} B(u, u)
= \lambda_{1}(\Omega_{1}).$$
(1)

Here we used the basic inequality that

$$\min_{x \in B} f(x) \le \min_{x \in A} f(x)$$

for $f: X \to \mathbb{R}$ and $A, B \subset X$ such that $A \subset B$. Here X is a Banach space. We here also used the assertion in Problem 1 which can be stated as follows:

"by zero extension we can regard $H_1(\Omega_1)$ as a subset of $H_1(\Omega_2)$ ".

By a similar argument for the formula similar to 1) we can prove that for any $k \in \mathbb{N} \setminus \{1\}$, there holds

$$\lambda_k(\Omega_2) \leq \lambda_k(\Omega_1)$$
.

3. and 4. Proof. Noting the main difference between the Neumann and Dirichlet boundary value problems: The test function space for the Dirichlet boundary value problem $\mathring{C}_{\infty}(\Omega)$ (or $\mathring{H}_1(\Omega)$) while for the Neumann boundary value problem the test space should be changed to $C_{\infty}(\Omega)$ (or $H_1(\Omega)$). We then can prove in a similar way as in the lecture, Lemma 9.2, Theorems 9.3, 9.4, Corollary 9.5, Theorem 9.6 and Corollaries 9.7, 9.8, for the operator of Neumann boundary value problem.