

WS 07/08 18. 01. 08 AG 06, FB Mathematik Tech. Univ. Darmstadt

Partial Differential Equations I: Linear Theory Solutions to the Exercises of Tutorial 12

1. Proof. i) Suppose that ||K|| = 0. We want to show that K = 0. By definition, we have

$$0 = ||K|| \ge \frac{||Kx||}{||x||},$$

for all $x \in X$, whence ||Kx|| = 0, so Kx = 0 for all $x \in X$. This means K = 0.

- ii) It is easy to see that $||\lambda K|| = |\lambda| ||\lambda K||$ for all $\lambda \in \mathbb{R}$.
- iii) The triangle inequality. For any two operators K, L, we have

$$||K + L|| = \sup_{x \in X, x \neq 0} \frac{||(K + L)x||}{||x||}$$

$$\leq \sup_{x \in X, x \neq 0} \frac{||Kx|| + ||Lx||}{||x||}$$

$$\leq \sup_{x \in X, x \neq 0} \frac{||Kx||}{||x||} + \sup_{x \in X, x \neq 0} \frac{||Lx||}{||x||}$$

$$= ||K|| + ||L||.$$

So ||K|| is a norm of K.

2. Proof. Choose a Cauchy sequence in $\mathcal{B}(X,X)$, say $\{K_n\}_n$, which satisfies

$$||K_n - K_m|| \to 0, \tag{1}$$

as $n, m \to \infty$.

Define a sequence

$$y_n = K_n x$$

for any $x \in X$. By triangle inequality we see that

$$||y_n - y_m|| = ||K_n x - K_m x|| \le ||K_n - K_m|| \, ||x|| \to 0$$

since x is fixed and (1) holds. So $\{y_n\}_n$ is a Cauchy sequence in X. By completeness of X we know that there exists $y \in X$ such that

$$y_n \to y$$
.

Next we define

$$Kx := y$$
.

It is not difficult to prove that $K: X \to X$ and K is linear. So we have

$$||K_n x - Kx|| \to 0.$$

Which combined with

$$||K_n x - Kx|| = \lim_{m \to \infty} ||K_n x - K_m x|| \le \liminf_{m \to \infty} ||K_n - K_m|| \, ||x||$$

yields $||K_n - K|| \to 0$, i.e. $K_n \to K$ in $\mathcal{B}(X, X)$.

3. Proof. Define

$$K_n = \sum_{i=0}^n K^i,$$

for any $n \in \mathbb{N}$. This is well-defined. It is easy to see that

$$||K^i|| \le ||K||^i,$$

whence

$$||K_{n} - K_{m}|| = ||\sum_{i=n+1}^{m} K^{i}|| \leq \sum_{i=n+1}^{m} ||K||^{i}$$

$$\leq ||K||^{n+1} \left(1 + ||K||^{1} + ||K||^{2} + \cdots\right)$$

$$\leq \frac{||K||^{n+1}}{1 - ||K||} \to 0.$$
(2)

as $n \to \infty$. Here we assume that n < m. Recalling that $\mathcal{B}(X, X)$ we assert that there exists $K \in \mathcal{B}(X, X)$ such that $K_n \to K$ in $\mathcal{B}(X, X)$.

Write

$$(I-K)K_n = \sum_{i=0}^n K^i - \sum_{i=1}^{n+1} K^i = I - K^{n+1},$$

SO

$$\lim_{n \to \infty} ((I - K)K_n) = (I - K)\lim_{n \to \infty} K_n = I - \lim_{n \to \infty} K^{n+1} = I,$$

since I - K is a bounded operator from X to X. Thus the limit of K_n is just the inverse of I - K.

3. Proof. Choose a uniformly bounded sequence $\{f_n\}_n$ in $C(\bar{\Omega})$. Invoking the property that a countinuous function on a compact domain is uniformly countinuous, we obtain that K = K(x,y) is uniformly continuous on $\bar{\Omega} \times \bar{\Omega}$. Thus we have for any $\varepsilon > 0$, there is $\delta > 0$ such that

$$|K(x_1,y)-K(x_2,y)|<\varepsilon/M$$

for any $(x_1, y), (x_2, y) \in \bar{\Omega} \times \bar{\Omega}$ satisfying $|x_1 - x_2| < \delta$.

We now define a seuqence $v_n(x) = (Kf_n)(x)$. There hold

- i) v_n is uniformly bounded.
- ii) v_n is equicontinuous. In fact, we have

$$|v_{n}(x_{1}) - v_{n}(x_{2})| = |(Kf_{n})(x_{1}) - (Kf_{n})(x_{2})|$$

$$\leq \int_{\overline{\Omega}} |K(x_{1}, y) - K(x_{2}, y)| |f_{n}(y)| dy$$

$$\leq ||f_{n}||_{\infty} \operatorname{meas} \cdot \sup |K(x_{1}, y) - K(x_{2}, y)|$$

$$\leq \varepsilon$$
(3)

here we took $M = ||f_n||_{\infty}$ meas.

By Azela-Ascoli K is compact as an operator from $C(\bar{\Omega})$ to $C(\bar{\Omega})$.

4. *Proof.* By the definition of compactness, the assertions are not difficult to prove. We thus omit the details here.