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Partial Differential Equations I: Linear Theory
Solutions to the Exercises of Tutorial 11

1. Proof. Since zy, y € I' and I' is flat, we see that the normal vector n,, at y, to
I' is orthogonal to I'. That is

(o —y)-ny =0. (1)

Hereafter the integer upper-scripts as in e.g. 37, :1:%, denote the jth component
of the vectors y, xy respectively. Recalling that for j = 1,2,3
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= 0, (2)
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here, we used (1). And the proof of the assertion is complete.

2. Solution. We use the jump relation for the double layer potential

1' 1 8 ei\/x|m0_y| dS
ylﬂgu(y) = —v(z) + 2 Jog Tﬂymv(y) y

for = € 9.



We define
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By the jump relation and (2) we then have that if x € T,
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The integrals in (3) is zero since the integrand is equal to zero, due to in first part
of the integral v = 0 in 0 \ I while the first factor of the integrand in I' is equal
to zero because of (2). Thus we have constructed a solution to

Au(z) + du(z) = 0, x €,
u(z) = f(x), zel.

3. Solution. The function u constructed above is, in general, not a solution of the
Dirichlet problem

Au(z) + du(z) = 0, x €, (4)
u(z) = f(z), x € 0. (5)

The reason is as follows: for € 9Q \ I', we can not obtain that u(z) = 0 which is
required by the jump relation. In fact, we have

1 o eVl 1 o eVl
v(y)dS, = =

—v(z) + f(y)dS,.
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Since x € 92\ I" and y € T', one can assume reasonably that dist{z, y} # 0, from

which we conclude that %eiﬁfyﬂl is continuous and is not identically equal to
Y

zero from the computations in Problem 1. Thus there exists at least one point, say
xg, such that
9 eVAlz—yl
ony, |z —vy|

Thus if we define a continuous function f such that f(z) = 1 for all x € B.(x)
with € being suitably small, f(z) = 0 for 2 € R*\ Ba.(2), and f(z) € [0,1] for
x € By \ B:(79), then there holds for this f that
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which by jump relation should be equal to zero since f(z) = 0 for x € 9Q \ T.
Therefore, u constructed in Problem 3 is not necessary a solution to problem (4)

(5)-

4. Solutz’on Since 2 = Bp(0) C R3, we know that the normal derivative is radial,

i.e. % ‘y| -V,. We consider the real valued solution, whence the jump relatlon
becomes
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= —v(z)— i/ wv(y)d&,. (6)
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Suppose that there is a solution u to the boundary value problem

Au(z) = 0, z € Bg(0),
u(z) = f(z), x € 0BR(0)

where f = const, then f satisfies

const = f(z) = —v(x) — % /y|:R %v(y)dsy.

We choose that v(z) = V = const, then the above equality becomes
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from which V can be solved if
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Thus we prove the existence of solution wu.
5. Solution. i) Let zy = (0,0, 1). To compute the integral
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we use the spherical coordinates:

z1 = Rsingcosb,
zy = Rsingsind,
z3 = Rcos o,
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where R =1, ¢ € [0, 7] and 0 € [0, 2r|. Thus dS, = sin ¢ df d¢. Moreover, we have
z-(z—2z)=1—coso, |z0—z2=+2(1—coso),

and the integral turns out to be
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ii) Making a suitable rotation we find that the assumption that z, = (0,0, 1)
is not a restriction due to the rotation invariance of this integral. Namely, for
any zo € 0B1(0), we write it 2o = (sin ¢g cos 0y, sin ¢g sin Oy, cos ¢p), then we make
suitable rotation transform M such that
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MZO = (0,0, 1)*

However, the form of the integral is not changed.
To do this, we first define

cos¢; —sing; 0
M, = sing; cos¢p; 0 |,
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and
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My = 0 1 0
singy, 0 cos ¢s

where ¢1, @5 are two constant to be determined. Then define

M = My Ms.

Letting
¢1=—bo, 2= .
It is easy to check that M7 M = I and Mz, = (0,0,1). Let y = Mz and yy = Mz.
There hold |y| = |Mz| =1,
z-(z2—=20) =My - (My—2)=y-(y—w),

and |z — zo| = |M(y — yo)| = |y — yo|- The integral turns out to be
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which has the exact form as that for z. This allows us to repeat i) for y to evaluate
the integral.



