Prof. Dr. H.-D. Alber

WS 07/08 21. 12. 07

AG 06, FB Mathematik Tech. Univ. Darmstadt

Partial Differential Equations I: Linear Theory Solutions to the Exercises of Tutorial 10

1. Proof. Let G = G(x, y) be the Green function to the Helmholtz equation with $\lambda \in \mathbb{R}$ and the Dirichlet boundary condition, prescribed on the boundary of a bounded open domain $\Omega \subset \mathbb{R}^3$ with smooth boundary.

For any $x, y \in \Omega$ such that $x \neq y$, we define $u(z) = G(z, x), \ v(z) = G(z, y)$. In what follows we freeze temporarily variables x, y and only allow z to change. We see that u(z), v(z) have singularity at z = x or z = y, respectively. To remove the singularities, we dig two small balls centered at x, y, i.e. $B_{\varepsilon}(x), B_{\varepsilon}(y) \subset \Omega$ for a small positive parameter ε . Therefore, u(z), v(z) satisfy the Helmholtz equation in the domain $\Omega_{\varepsilon} := \Omega \setminus \{B_{\varepsilon}(x) \cup B_{\varepsilon}(y)\}$.

Then we can apply the Green formula to u(z), v(z) in Ω_{ε} and obtain

$$\int_{\Omega_{\varepsilon}} (v\Delta u - u\Delta v) dz = \int_{\partial\Omega_{\varepsilon}} \left(v \frac{\partial u}{\partial n_z} - u \frac{\partial v}{\partial n_z} \right) dS_z$$
 (1)

here n_z is the normal vector to Ω_{ε} .

Since $\Delta_z u + \lambda u = 0$ and $\Delta_z v + \lambda v = 0$ in Ω_{ε} , we compute the left-hand side as

$$\int_{\Omega_{\varepsilon}} (v\Delta_z u - u\Delta_z v) dz = -\int_{\Omega_{\varepsilon}} (v \cdot \lambda u - u \cdot \lambda v) dz = 0.$$
 (2)

The boundary of the domain Ω_{ε} consists of three parts: $\partial\Omega \cup \partial B_{\varepsilon}(x) \cup \partial B_{\varepsilon}(y)$, moreover u, v are equal to 0 at the boundary $\partial\Omega$, thus equation (1) turns out to be

$$0 = \int_{\partial\Omega_{\varepsilon}} \left(v \frac{\partial u}{\partial n_{z}} - u \frac{\partial v}{\partial n_{z}} \right) dS_{z}$$

$$= \int_{\partial\Omega\cup\partial B_{\varepsilon}(x)\cup\partial B_{\varepsilon}(y)} \left(v \frac{\partial u}{\partial n_{z}} - u \frac{\partial v}{\partial n_{z}} \right) dS_{z}$$

$$= \int_{\partial B_{\varepsilon}(x)} \left(v \frac{\partial u}{\partial n_{z}} - u \frac{\partial v}{\partial n_{z}} \right) dS_{z} + \int_{\partial B_{\varepsilon}(y)} \left(v \frac{\partial u}{\partial n_{z}} - u \frac{\partial v}{\partial n_{z}} \right) dS_{z}$$

$$=: I_{1} + I_{2}.$$
(3)

Next we want to pass to limit in (3) as $\varepsilon \to 0$, by using the properties (iii) and (iv), listed on Page 68 in the lecture notes, of the Green function G. We first consider I_1 . From the definition we see that v is smooth (infinitely continuously differentiable) in $B_{\varepsilon}(x)$, we write

$$I_{1} = \int_{\partial B_{\varepsilon}(x)} \left(v \frac{\partial u}{\partial n_{z}} - u \frac{\partial v}{\partial n_{z}} \right) dS_{z}$$

$$= \int_{\partial B_{\varepsilon}(x)} v(x) \frac{\partial u(z)}{\partial n_{z}} dS_{z} + \int_{\partial B_{\varepsilon}(x)} (v(z) - v(x)) \frac{\partial u(z)}{\partial n_{z}} dS_{z}$$

$$+ \int_{\partial B_{\varepsilon}(x)} u(z) \frac{\partial v}{\partial n_{z}} dS_{z}$$

$$=: I_{11} + I_{12} + I_{13}. \tag{4}$$

For I_{11} , using property (iv) on Page 68, we get

$$I_{11} \to v(x)$$
. (5)

Since v is uniformly continuous on $\partial B_{\varepsilon}(x)$, for any $\delta > 0$, there exists a small ε , such that

$$|v(z) - v(x)| \le \delta.$$

Thus, I_{12} can be estimated as

$$|I_{12}| \le \delta \int_{\partial B_{\varepsilon}(x)} \left| \frac{\partial u(z)}{\partial n_z} \right| dS_z \to 0.$$
 (6)

Here we used that $\int_{\partial B_{\varepsilon}(x)} \left| \frac{\partial u(z)}{\partial n_z} \right| dS_z$ is finite which can be proved in a similar way as in the lecture notes. (In fact, by definition we can rewrite u = F + w where F is the fundamental solution to the Helmholtz equation and w has good regularity say its derivative in $L_2(\Omega)$, thus $\int_{\partial B_{\varepsilon}(x)} \left| \frac{\partial w(z)}{\partial n_z} \right| dS_z \to 0$ since $\text{meas}(\partial B_{\varepsilon}(x)) \to 0$ as $\varepsilon \to 0$. For the term containing F, we can prove that it converges to 0 as in the lecture notes. Since v is smooth, we obtain $\left| \frac{\partial v}{\partial n_z} \right| \leq C$ on $\partial B_{\varepsilon}(x)$. Hence

$$|I_{13}| \le C \int_{\partial B_{\varepsilon}(x)} |u(z)| dS_z \to 0.$$
 (7)

Here we used $\int_{\partial B_{\varepsilon}(x)} |u(z)| dS_z \to 0$ which can be proved using a similar idea as above.

Combination of (3) - (7) we then assert that

$$\int_{\partial B_{\varepsilon}(x)} \left(v \frac{\partial u}{\partial n_z} - u \frac{\partial v}{\partial n_z} \right) dS_z \to v(x) = G(x, y) \tag{8}$$

as $\varepsilon \to 0$.

By symmetric role that (u, x) and (v, y) play, we obtain easily that

$$\int_{\partial B_{\varepsilon}(y)} \left(v \frac{\partial u}{\partial n_y} - u \frac{\partial v}{\partial n_y} \right) dS_y \to u(y) \tag{9}$$

as $\varepsilon \to 0$.

Therefore, from (3), (8) and (9) we infer that

$$0 = v(x) - u(y),$$

i.e.

$$G(x,y) = G(y,x).$$

And the proof of symmetry of G is complete.

2. Proof. We first fix $x \in \Omega$. To guarantee the regularity of G in a certain subdomain of Ω , we also dig a small ball as in Problem 1. Choose a small number $\varepsilon > 0$ such that

$$B_{\varepsilon}(x) \subset \Omega$$
.

By definition we see that G satisfies

$$\Delta_y u + \lambda u = 0$$
, in $\Omega_\varepsilon = \Omega \setminus B_\varepsilon(x)$,

and u(x,y) = 0 for $y \in \partial \Omega$.

It is easy to see that $G(x,y) \to +\infty$ as $y \to x$, thus for suitably small ε there holds

$$G(x,y) > 0$$
, for $y \in \partial B_{\varepsilon}(x)$.

Recalling that $\lambda < 0$ we can now apply the maximum principle to G over Ω_{ε} to get

$$G(x,y) \ge \min \left\{ 0, \min_{y \in \partial \Omega_{\varepsilon}} G(x,y) \right\} = 0,$$

Thus

$$G(x,y) \ge 0, y \in \Omega_{\varepsilon},$$

since ε is chosen arbitrarily, we also conclude this is true for all $y \in \Omega$ but $y \neq x$. The proof is thus complete.

3. Proof. We consider the more general case, i.e. the operator A is defined by

$$A = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial}{\partial x_j} \right),\,$$

where a_{ij} are constant and such that $a_{ij} = a_{ij}$ for all i, j = 1, 2, 3.

We want to search a fundamental solution F in the form

$$F = \frac{1}{\kappa} \cdot \frac{1}{|x - y|_M},$$

here κ is a constant to be determined, $|x-y|_M := \sqrt{(x-y) \cdot M(x-y)}$ and $M = (M_{ij})_{3\times 3}$ is a symmetric matrix which should be chosen so that

$$A_x F(x,y) = 0, \quad A_y F(x,y) = 0,$$

and

$$\lim_{r \to 0} \int_{\{y \in \mathbb{R}^3 \mid |x-y| = r\}} \frac{\partial}{\partial n_y} F(x, y) \, dS_y = 1,$$

where n_y is the unit exterior normal vector.

We now compute $A_xF(x,y)$. To simplify the notations we apply the Einstein summation convention, i.e. repeated indices in a single term are implicitly summed over. In what follows we allow i, j, k, l to take values in $\{1, 2, 3\}$. Thus, for instance, the operator A can be rewritten as

$$A = a_{ij} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}$$

and

$$(x-y) \cdot M(x-y) = m_{ij}(x_i - y_i)(x_j - y_j)$$

Recalling $(x^{-\frac{1}{2}})' = -\frac{1}{2}(x^{-\frac{3}{2}})$. Straightforward computations and using the symmetry of M yield

$$\frac{\partial}{\partial x_k} F(x, y) = -\frac{1}{\kappa} \frac{1}{|x - y|_M^3} (m_{kj}(x_j - y_j)) = -\frac{1}{\kappa} \frac{1}{|x - y|_M^3} (m_{ki}(x_i - y_i)),$$

since i, j are dummy indices. And the second order derivatives are

$$\frac{\partial}{\partial x_l} \frac{\partial}{\partial x_k} F(x, y)
= \frac{1}{\kappa} \frac{1}{|x - y|_M^5} \left(3(m_{kj}(x_j - y_j)) \cdot (m_{lj}(x_j - y_j)) - m_{kl} \cdot |x - y|_M^2 \right).$$
(10)

From the above computations and the definition of A we then obtain

$$= \frac{A_x F(x,y)}{\kappa |x-y|_M^5} \left(3a_{kl}(m_{kj}(x_j-y_j)) \cdot (m_{li}(x_i-y_i) - a_{kl}m_{kl}m_{ij}(x_i-y_i)(x_j-y_j))\right)$$

$$= \frac{1}{\kappa |x-y|_M^5} \left(3(M(x-y)) \cdot \mathcal{A}(M(x-y)) - \text{tr}(\mathcal{A}M)(x-y) \cdot M(x-y)\right). (11)$$

Here, $\mathcal{A} = (a_{ij})$ and the operator tr denotes the trace of a matrix. Therefore, if we choose that

$$M = \mathcal{A}^{-1},$$

then one has

$$tr(\mathcal{A}M) = tr(Id) = 3,$$

hence from (11), noting that $M(x-y) \cdot \mathcal{A}M(x-y) = (x-y) \cdot M(x-y)$ by symmetry of M, we conclude that

$$A_x F(x,y) = \frac{3}{\kappa} \frac{1}{|x-y|_M^5} \left(M(x-y) \cdot \mathcal{A} M(x-y) - (x-y) \cdot M(x-y) \right) = 0.$$

Similarly we obtain

$$A_y F(x,y) = 0$$

provided that $M = \mathcal{A}^{-1}$.

It remains to check the third condition in the definition of F. Invoking that n_y to a ball $\{y \in \mathbb{R}^3 \mid |x-y|=r\}$ is radical, we have

$$\frac{\partial}{\partial n_{y}} F(x,y) = -\frac{\partial}{\partial r} F(x,y)
= \frac{1}{\kappa} \frac{1}{|x-y|_{M}^{3}} (m_{kj}(x_{j}-y_{j})) \frac{x_{k}-y_{k}}{r}
= \frac{1}{\kappa} \frac{1}{r|x-y|_{M}^{3}} (x-y) \cdot M(x-y) = \frac{1}{\kappa} \frac{1}{r|x-y|_{M}^{3}} |x-y|_{M}^{2}
= \frac{1}{\kappa} \frac{1}{r|x-y|_{M}}$$
(12)

Thus, transforming the coordinates y-x to (r,ω) with r=|y-x|, we obtain

$$\lim_{r\to 0} \int_{\{y\in\mathbb{R}^3\,|\,|x-y|\,=\,r\}} \frac{\partial}{\partial n_y} F(x,y)\,dS_y = \frac{1}{\kappa} \int_{|\omega|=1} \frac{d\omega}{|\omega|_M},$$

from which one gets that the limit is 1 since we choose

$$\kappa = \int_{|\omega|=1} \frac{d\omega}{|\omega|_M}.$$

Therefore, F defined above is a fundamental solution to the operator A.