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Partial Differential Equations I: Linear Theory

Solutions to the Exercises of Tutorial 10

1. Proof. Let G = G(x,y) be the Green function to the Helmholtz equation with
A € R and the Dirichlet boundary condition, prescribed on the boundary of a
bounded open domain  C R? with smooth boundary.

For any x,y € Q such that o # y, we define u(z) = G(z,z), v(z) = G(z,y). In
what follows we freeze temporarily variables x,y and only allow z to change. We
see that u(z),v(z) have singularity at z = x or z = y, respectively. To remove the
singularities, we dig two small balls centered at z,y, i.e. B.(x), B:(y) C 2 for a
small positive parameter . Therefore, u(z), v(z) satisfy the Helmholtz equation in
the domain Q. := Q\{B.(z) U B-(y)}.

Then we can apply the Green formula to u(z),v(z) in €. and obtain

/ (vAu —ulAv)dz = /ag (vaa;j — u%) as, (1)

here n, is the normal vector to €)..
Since Au + Au = 0 and A.v + Av = 0 in )., we compute the left-hand side as

/QE(vAzu—quv)dz:—/ (v Au—u- \v)dz = 0, 2)

Qe

The boundary of the domain 2. consists of three parts: 92 U 0B.(x) U 0B.(y),
moreover u, v are equal to 0 at the boundary 0€2, thus equation (1) turns out to be
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Next we want to pass to limit in (3) as € — 0, by using the properties (iii) and (iv),
listed on Page 68 in the lecture notes, of the Green function GG. We first consider I;.
From the definition we see that v is smooth (infinitely continuously differentiable)
in B.(z), we write
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For [1, using property (iv) on Page 68, we get
In — U(.T) (5)

Since v is uniformly continuous on 0B.(zx), for any § > 0, there exists a small ¢,
such that
[0(2) — v()| < 6.

Thus, I;5 can be estimated as
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Here we used that |, 9B () ‘%u_g dS, is finite which can be proved in a similar way

as in the lecture notes. (In fact, by definition we can rewrite u = F' + w where F’

is the fundamental solution to the Helmholtz equation and w has good regularity
Ow(z)
on,
¢ — 0. For the term containing F', we can prove that it converges to 0 as in the

say its derivative in Ly(£2), thus fBBg(:E) ‘ dS, — 0 since meas(90B:(z)) — 0 as

lecture notes. Since v is smooth, we obtain |88—7Z| < C on 0B-(zx). Hence
OB (x)

Here we used | 9B (x) |u(2)|dS, — 0 which can be proved using a similar idea as
above.
Combination of (3) (7) we then assert that

Ou ov
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as € — 0.



By symmetric role that (u,z) and (v,y) play, we obtain easily that

as € — 0.
Therefore, from (3), (8) and (9) we infer that

0 =v(z) —uly),
ie.

G(z,y) = Gy, 2).
And the proof of symmetry of GG is complete.

2. Proof. We first fix = € 2. To guarantee the regularity of GG in a certain sub-
domain of €2, we also dig a small ball as in Problem 1. Choose a small number
€ > 0 such that

B.(z) C L

By definition we see that G satisfies
Ayu+ =0, in Q. =Q\ B.(z),

and u(z,y) = 0 for y € 9.
It is easy to see that G(z,y) — +00 as y — x, thus for suitably small e there
holds
G(z,y) > 0, for y € 0B.(x).

Recalling that A < 0 we can now apply the maximum principle to G over €2, to get

G(z,y) > min {0, min G(a:,y)} =0,

YEIN:

Thus
G(z,y) >0, y € Q.

since ¢ is chosen arbitrarily, we also conclude this is true for all y €  but y # .
The proof is thus complete.

3. Proof. We consider the more general case, i.e. the operator A is defined by

3
0 0
1350 (w02

where a;; are constant and such that a;; = a;; for all 7,7 =1, 2, 3.
We want to search a fundamental solution F' in the form
1 1
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here £ is a constant to be determined, |z — y|yr = \/(z —y) - M(z —y) and M =
(M;;)3x3 is a symmetric matrix which should be chosen so that

A F(z,y) =0, A F(z,y)=0,

and 5
lim —F(z,y)dS, =1,
=0 J{yers| la—y| = 1} Oy

where n,, is the unit exterior normal vector.

We now compute A, F(z,y). To simplify the notations we apply the Einstein
summation convention, i.e. repeated indices in a single term are implicitly summed
over. In what follows we allow i, j, k, [ to take values in {1,2,3}. Thus, for instance,
the operator A can be rewritten as
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and

(z—y) - M(z —y) =my(zi —yi)(x; — y5)
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Recalling (z2) = —3(
try of M yield

. Straightforward computations and using the symme-
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since 4, j are dummy indices. And the second order derivatives are

£ﬁ%ﬂ%w
= %m(i%(mkj(% = ;) - (my;(@; — y5)) — mi - [ — yﬁW) (10)

From the above computations and the definition of A we then obtain

AP (z,y)
- %m Baw(ma; (2 — ;) - (mai@; — i) — armm; (2 — yi) (25 — y;))
- %m B(M(z —y)) AM(z —y)) — tr(AM) (x —y) - M(z —y)). (11)

Here, A = (a;;) and the operator tr denotes the trace of a matrix. Therefore, if we
choose that
M=A,

then one has
tr(AM) = tr(Id) = 3,



hence from (11), noting that M (z—vy)- AM(z—y) = (x—y)-M(x—y) by symmetry
of M, we conclude that
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A F(x,y) = ———
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(M(z —y)- AM(z —y) — (z —y) - M(x —y)) =0,

Similarly we obtain
AF(z,y) =0
provided that M = A~1.

It remains to check the third condition in the definition of F'. Invoking that n,
to a ball {y € R?| |z — y| = r} is radical, we have
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Thus, transforming the coordinates y — x to (r,w) with r = |y — x|, we obtain

1 d
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from which one gets that the limit is 1 since we choose

/ dw
R = —_—.
|w|=1 |wlnr

Therefore, F' defined above is a fundamental solution to the operator A.



