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Partial Differential Equations I: Linear Theory
Solutions to the Exercises of Tutorial 09

1. The picture of €, is easy to draw, we omit it here.
i) To solve the problem

Au+u = 0, in Q,,

Uf|8Qa = 07 (1)
we first rewrite the equation in the polar coordinates (r,6), so that we can make
use of the method of separation of variables. Recalling

0? 10 1 02

U+ ——=u

or? ror r2 0602

and defining an ansatz
u(r,0) = R(r)sin(cb),
here ¢ is a constant to be determined, we then obtain that @ must satisfy

d?a 1da c?
W—i_ —+(1——)CLO, (2)

rdr 72

on the other hand, to meet the boundary condition we can choose ¢ = 57— so that

sin(cf) = 0 at the boundary, i.e. § = 0,27 — . Since we are intending to find a
solution, we just take hereafter

™
CcC =

or —a

From the lecture notes we know that the solution to (2) can be represented as

Bessel’s functions, we take one and denote it by J.(r). Then we obtain a solution
u to (1)

. o —1)k r2k+e
u(r,0) = J.(r)sin(ch) = ; X F(( +)k: Y (§> sin(cf).
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ii) Recalling ¢ = 5"—, the fact that the Bessel function converges absolutely

and the above formula for u we get easily that

Since the equation is linear and the boundary condition is homogeneous,

a(r,0) =T'(c+ 1)2%(r,0)

is also a solution to the same problem. Thus we find a solution satisfying

u(r, ) = rI=a sin (2 T gp) (14 0(r)).

T =

2. Proof. From the assumption that f € Ly(R?) with f(z) = 0 for all |z| > 1, we
infer that f € Li(B1(0)) by Cauchy’s inequality, thus f|x|<1 f(x)dx exists.
We now turn to prove that for any |y| < 1 there holds
1 1

[z —yl 2]

as |z| — oo. To this end, without loss of generality we may assume |z| > 2 so that
1
=yl 2 fa = |yl = |2[ =1 = 5]

here we used the triangle inequality and the fact that |y| < 1. Thus we can rewrite

1 1 — T — 1
[z =yl 2] |z =yl || [z =yl lz] = 3l
as |z| — oo.
Therefore, recalling u = F * f and F(x) = ﬁﬁ (in the real case and in R?),
we obtain
@ = Fepa) = [
u(zr) = * f)(x) = — y)dy
4T Jy<a 2 =yl

_ ( ! —i)f(y)dy+$ 1f(y)dy-

4m ly|<1 |z —yl || ly|<1 |z

hence, by (3) and the integrability of f over a bounded domain, one has

| | 2 |al
efu(a) - - |yl§1f(y)dy' L /| . (T—m ‘H) f(y)dy]
1 1
- d
o7 Tal |y|§1|f(y)| Y
< Y
]
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and the proof is thus complete.

3. Proof. Let v be the solution to
Av =0, in By(0)

satisfying the boundary condition v|sp, ) = ©|as, (0)-
Then we define
wy =u—vEeF(r),

where F'(r) is the non-negative fundamental solution to the Laplace equation and
€ is any positive constant. Recalling the property of the non-negative fundamental
solution we know that F'(r) — oo as x — 0. Therefore from the boundedness of u
and also v we infer that

we =u—vEeF(r) — too,

as ¢ — 0.

Now we consider a domain €25 = B;(0) \ Bs(0) with a small constant 6 << 1. It
is easy to see that wy are harmonic in 25 for any fixed 6. Applying the maximum
principle we find

:twi Z 0

for all x € ()5 for arbitrary . From which we can conclude that

—elF(r) <u—v <eF(r),
ie.

u(z) —v(z)| < el(r) =0,
as € — 0. Then it follows that

u(z) = v(z)

for every x € Q5. But § is an arbitrary constant, so u = v in By(0). Since v is
harmonic, so is u.



