Prof. Dr. H.-D. Alber

WS 07/08 07. 12. 07 AG 06, FB Mathematik Tech. Univ. Darmstadt

Solutions to the Exercises of Tutorial 08

1. Proof. Since u satisfies the mean value formula, we have

$$u(x) = \frac{1}{\pi r^2} \int_{B_r(x)} u(y) dy,$$

for any $B_r(x) \subset \Omega$.

We employ the argument of contradiction and assume that there exists a point $x_0 \in \Omega$, such that $\Delta u(x_0) \neq 0$. Without loss of generality we assume that $\Delta u(x_0) > 0$. From the continuity of u we conclude that there exists a ball $B_{\varepsilon}(x_0)$ such that

$$\Delta u(x) > 0$$
, for all $x \in B_{\varepsilon}(x_0)$, (1)

here ε is a small positive number.

Since we assume that $u \in C_2(\Omega)$, we can apply the Green formula to get

$$\int_{B_{\varepsilon}(x_0)} \Delta u(x) dx = \int_{\partial B_{\varepsilon}(x_0)} \nabla u(x) \cdot n dS_x$$

$$= \int_0^{2\pi} \frac{\partial}{\partial r} u(r\omega) d\theta$$

$$= \frac{\partial}{\partial r} \int_0^{2\pi} u(r\omega) d\theta$$

$$= \frac{\partial}{\partial r} u(x_0) = 0.$$

However, the integral $\int_{B_{\varepsilon}(x_0)} \Delta u(x) dx$ is positive by (1).

Thus we arrive at a contradiction. Whence $\Delta u(x) = 0$ for all $x \in \Omega$, i.e. u is harmonic.

2. Proof. Firstly we compute $\Delta f(u)$ for C^2 -functions $f: \mathbb{R} \to \mathbb{R}$ and $u: \mathbb{R}^n \to \mathbb{R}$. There holds

$$\Delta(f(u)) = f'(u)\Delta u + f''(u)|\nabla u|^2.$$

i) Thus choosing $f(u) = u^2$ we then have $\Delta(u^2) = 2(u\Delta u + |\nabla u|^2)$. Since u is a harmonic function, one has

$$\Delta(u^2) = 2|\nabla u|^2 \ge 0.$$

Now we choose a ball $B \subset \in \mathbb{R}^n$. It is easy to find a solution v to

$$\Delta v = 0$$
, in B,

and $v|_{\partial B} = (u^2)|_{\partial B}$. We need only to prove that $v \leq u$ in B. To prove this we let $w = u^2$ and F = w - v. Then F satisfies

$$\Delta F = g$$
, in B ,

and $F|_{\partial B}=0$, where $g=2|\nabla u|^2\geq 0$. Applying the maximum principle we obtain

$$F \leq 0$$
.

Therefore u^2 is sub-harmonic.

- ii) For any convex function $f \in C_2(\mathbb{R}, \mathbb{R})$, by a slightly different argument we prove that the composite function f(u) is sub-harmonic.
- **3.** Proof. The proof consists of three steps. We first construct a smooth approximation, say $|x|_{\varepsilon}$, of |x|, then prove this approximate function is sub-harmonic. Finally pass the approximate function to limit as $\varepsilon \to 0$.
 - i) We define

$$|x|_{\varepsilon} = \sqrt{|x|^2 + \varepsilon^2}$$
.

It is easy to show that $|x| + \sqrt{|x|^2 + \varepsilon^2} \ge \varepsilon$ for all x. Thus

$$||x|_{\varepsilon} - |x|| = \frac{\varepsilon^2}{|x|_{\varepsilon} + |x|} \le \varepsilon \to 0$$

as $\varepsilon \to 0$.

ii) Straightforward computations yield

$$\partial_{x_i}(|x|_{\varepsilon}) = \frac{x_i}{|x|_{\varepsilon}},$$

and

$$\partial_{x_i}^2(|x|_{\varepsilon}) = \frac{|x|^2 + \varepsilon^2 - x_i^2}{|x|_{\varepsilon}^3},$$

from which we obtain

$$\Delta(|x|_{\varepsilon}) = \frac{(n-1)|x|^2 + n\varepsilon^2}{|x|_{\varepsilon}^3} =: f_{\varepsilon}(x).$$

Choose any ball $B \subset \mathbb{R}^n$. Suppose that v^{ε} is a solution to

$$\Delta v^{\varepsilon} = 0$$
, in B.

and $v^{\varepsilon}|_{\partial B} = (|x|_{\varepsilon})|_{\partial B}$. From the lecture notes we know such solution exists. Let $w_{\varepsilon} = |x|_{\varepsilon} - v^{\varepsilon}$, then w satisfies

$$\Delta w = f$$
, in B ,

and $w_{\varepsilon}|_{\partial B}=0$. Note that $f_{\varepsilon}\geq 0$. Applying the maximum principle yields

$$w \leq 0$$

whence $|x|_{\varepsilon}$ is sub-harmonic.

iii) $|x|_{\varepsilon}$ converges to |x| uniformly. Note that

$$|x| \leq |x|_{\varepsilon} \leq v^{\varepsilon}$$
, in B

and $(v^{\varepsilon})|_{\partial B} = |x|_{\varepsilon}^{\varepsilon}|_{\partial B} \to (|x|)|_{\partial B}$ as $\varepsilon \to 0$. We also have $v^{\varepsilon} \to v$ in $C(\bar{B})$ which is harmonic. Thus |x| is sub-harmonic. This argument indicates that Theorem 5.12 in the lecture notes is still true for the case that we have infinitely many sub-solutions.

4. i) Define $w \equiv 0$. It is easy to see that w is a super-solution to the equation

$$\lambda v + \Delta v = 0$$
, in Ω ,

with $\lambda \leq 0$ satisfying the boundary condition $w|_{\partial\Omega} = 0$.

- ii) There are two cases according to $\lambda = 0$ or $\lambda < 0$.
- a) We assume firstly that $\lambda < 0$. Define a function in the form:

$$u_1(x) = -M \left(1 - e^{-\mu d(x)}\right)$$

Here M, $\mu > 0$ are positive constants to be determined later on, and d = d(x) defined $d(x) = \operatorname{dist}(x, \partial\Omega)$ for any $x \in \Omega$, is the distance function which is Lipschitz continuous (this can be proven by using the triangle inequality easily). Furthermore, since the boundary $\partial\Omega$ is C^2 , we have that d(x) is C^2 too for x near $\partial\Omega$, u_1 is also C^2 . Now we calculate

$$\partial_i u_1 = -\mu M e^{-\mu d} \partial_i d,$$

and

$$\partial_i^2 u_1 = (\mu(\partial_i d)^2 - \partial_i^2 d) M \mu e^{-\mu d}$$

Therefore, we obtain for x near $\partial\Omega$, say $x\in\Omega_{\gamma}=\left\{x\in\Omega\mid d(x)<\frac{1}{\gamma}\right\}$, that

$$\lambda u_1 + \Delta u_1 = -\lambda M + \left(\lambda + \mu^2 \sum_{i=1}^3 (\partial_i d)^2 - \mu \Delta d\right) M e^{-\mu d}$$

$$\geq -\lambda M + \frac{1}{2} \lambda M$$

$$= -\frac{1}{2} \lambda M > 0,$$

provided that $x \in \Omega_{\gamma}$ and $\gamma = \frac{1}{\mu}$, where μ is sufficiently small from which it follows that $e^{-\mu d}$ approaches to 1 (In fact, we have $e^{-1} \le e^{-\mu d} \le 1$ for all $x \in \Omega_{\gamma}$), also the

continuity of Δd and $\partial_i d$ over $\bar{\Omega}_{\gamma}$ which implies that they are uniformly bounded on $\bar{\Omega}_{\gamma}$, namely there exists a constant K such that $|\partial_i d| + |\Delta d| \leq K$.

The above computations motivate us to construct a sub-solution as follows: Choose the two positive constants M, C such that $C \ll M$. Then we have

$$\underline{u}(x) = u_1(x)$$

for x which closes sufficiently to the boundary of Ω , otherwise

$$u(x) = -C$$
.

Using the property that $\max\{f,g\}$ is a sub-solution if f,g are sub-solutions (see also Theorem 5.12 in the lecture notes), one can easily prove that \underline{u} is a sub-solution. to the Helmholtz equation, satisfying $\underline{u}|_{\partial\Omega}=0$. It remains to show that u_1 is a sub-solution.

Since d may be not differentiable at x which is not near the boundary, we employ an approximate procedure. One way is to apply the Weierstrass theorem which says that a continuous function can be approximated by a polynomial sequence. Another is to use the convolution introduced in the lecture. Here we use the latter one. Taking a function $\varphi_{\varepsilon} \in C_{\infty}$ such that $\int_{\mathbb{R}^n} \varphi_{\varepsilon} dx = 1$, the support of $\varphi_{\varepsilon}(x)$ is $B_{\varepsilon}(0)$. It is not difficult to prove that

$$f * \varphi_{\varepsilon} \in C_{\infty}(\mathbb{R}^n),$$

if $f \in L_{1,loc}(\mathbb{R}^n)$. Applying this to function d which is Lipschitz continuous, hence $d \in L_1(\Omega)$, so $d * \varphi_{\varepsilon} \in C_{\infty}(\Omega)$. Moreover, we have

$$d * \varphi_{\varepsilon} \to d$$
, in $C(\Omega)$.

We now define a new function u_1^{ε} by

$$u_1^{\varepsilon}(x) = -M \left(1 - e^{-\mu d^{\varepsilon}(x)}\right)$$

Similar the computations carried out for u_1 , and choosing μ suitably small (however maybe depends on ε in this case) yield

$$\begin{split} \lambda u_1^\varepsilon + \Delta u_1^\varepsilon &= -\lambda M + \left(\lambda + \mu^2 \sum_{i=1}^3 (\partial_i d^\varepsilon)^2 - \mu \Delta d^\varepsilon \right) M e^{-\mu d^\varepsilon} \\ &\geq -\lambda M + \frac{1}{2} \lambda M \\ &= -\frac{1}{2} \lambda M > 0, \end{split}$$

for any fixed ε . From this one can conclude that u_1^{ε} is a sub-solution to Helmholtz equation satisfying suitable boundary condition. Using again Theorem 5.12 in a slightly general version (i.e. for infinitely many sub-solutions), we then conclude

the limit, u_1 , of u_1^{ε} , is also a sub-solution to the Helmholtz equation satisfying the zero boundary condition.

b) We now consider the case that $\lambda=0$. For this problem, the above technique does not work. However it is valid for a new function v^{ε} which is defined by $v^{\varepsilon}=e^{\varepsilon x_1}u$ with a small parameter ε . For simplicity we omit the upper-script ε till we investigate its limit. Then one has

$$\partial_1 v = \varepsilon e^{\varepsilon x_1} u + e^{\varepsilon x_1} \partial_1 u, \quad \partial_i v = e^{\varepsilon x_1} \partial_i u, \text{ for } i \neq 1,$$

and

$$\partial_1^2 v = \varepsilon^2 e^{\varepsilon x_1} u + 2\varepsilon e^{\varepsilon x_1} \partial_1 u + e^{\varepsilon x_1} \partial_1^2 u, \quad \partial_i^2 v = e^{\varepsilon x_1} \partial_i^2 u, \text{ for } i \neq 1,$$

Thus

$$\Delta v + 2\varepsilon \partial_1 v - 3\varepsilon^2 v = 0.$$

There is a term in the equation, which involves the first order derivative $\partial_1 v$. However, from the argument in a) we see that this is not an essential difficulty. Letting $\lambda = -3\varepsilon^2$, we see that this equation satisfies the requirement of a), i.e. $\lambda < 0$.

Therefore we can construct a sub-solution satisfying $v^{\varepsilon}|_{\partial\Omega} = 0$, in a similar manner as in a), for every fixed ε . Then letting $\varepsilon \to 0$ we get the limit function u satisfying $u|_{\partial\Omega} = 0$ and u is a sub-solution to the Helmholtz equation.