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Solutions to the Exercises of Tutorial 08

1. Proof. Since u satisfies the mean value formula, we have

1
u(z) = W/B - u(y)dy,

for any B,(x) C Q.

We employ the argument of contradiction and assume that there exists a point
xo € €2, such that Au(zg) # 0. Without loss of generality we assume that Au(zg) >
0. From the continuity of u we conclude that there exists a ball B.(zo) such that

Au(zx) > 0, for all z € B.(xp), (1)

here ¢ is a small positive number.
Since we assume that u € Cy(2), we can apply the Green formula to get

/ Au(z)dzr = / Vu(z) - ndS,
B (o) 0B¢(z0)

2m o
= i Eu(rw)dQ

27
= %/ u(rw)dl
0

0
= Eu(xo) =0.

However, the integral [, (z) Du(z)dx is positive by (1).
Thus we arrive at a contradiction. Whence Au(x) = 0 for all z € Q, i.e. u is
harmonic.

2. Proof. Firstly we compute A f(u) for C?*—functions f : R — R and v : R"” — R.
There holds
A(f(u) = f'(w)Au+ f"(u)|Vul®.

i) Thus choosing f(u) = u? we then have A(u?) = 2 (uAu + |Vul?). Since u is
a harmonic function, one has

A(u?) = 2|Vul® > 0.
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Now we choose a ball B ce R”. It is easy to find a solution v to
Av =0, in B,

and v|pp = (u?)|sp. We need only to prove that v < u in B. To prove this we let
w=u? and F' = w —v. Then F satisfies

AF =g, in B,
and Flsp = 0, where g = 2|Vu|? > 0. Applying the maximum principle we obtain
F <O0.

Therefore u? is sub-harmonic.
ii) For any convex function f € Cy(R,R), by a slightly different argument we
prove that the composite function f(u) is sub-harmonic.

3. Proof. The proof consists of three steps. We first construct a smooth approx-
imation, say |z|, of |z|, then prove this approximate function is sub-harmonic.
Finally pass the approximate function to limit as ¢ — 0.

i) We define
2] = V/]z|* + €.
It is easy to show that |z| 4+ \/|z|? + €2 > ¢ for all . Thus

2

3
ze—lz| | =—— <e—0

as e — 0.
ii) Straightforward computations yield
‘r.
O, =
37iz(|x|€) |-T|e’
and 2f? 4 2 )
9 [ FL2 e Ol e
8x2(|m|€) - Tza
from which we obtain
(n — 1)|z|* + ne?
|2

A(lz]e) = = [o(2).

Choose any ball B C R™. Suppose that v¢ is a solution to
Av® =0, in B,

and v°|sp = (|z]c)|ap. From the lecture notes we know such solution exists. Let
w. = |z|. — v°, then w satisfies

Aw = f, in B,



and w.|sp = 0. Note that f. > 0. Applying the maximum principle yields
w<0

whence |z|. is sub-harmonic.

iii) |z|. converges to |z| uniformly. Note that
|z| < |z|. <0° in B

and (v9)|ap = |z[%|a — (|7|)|s as € — 0. We also have v — v in C(B) which is
harmonic. Thus |z| is sub-harmonic. This argument indicates that Theorem 5.12 in
the lecture notes is still true for the case that we have infinitely many sub-solutions.

4. i) Define w = 0. It is easy to see that w is a super-solution to the equation
A+ Av =0, in

with A < 0 satisfying the boundary condition w|sq = 0.

ii) There are two cases according to A =0 or A < 0.
a) We assume firstly that A < 0. Define a function in the form:

uy(z) = —-M (1- e_“d(“”))

Here M, p > 0 are positive constants to be determined later on, and d = d(x) de-
fined d(x) = dist(x, 9Q) for any x € €2, is the distance function which is Lipschitz
continuous (this can be proven by using the triangle inequality easily). Further-
more, since the boundary 9 is C?, we have that d(z) is C? too for x near 092, u;
is also C%. Now we calculate

@-ul = —pMe_“dc{)id,

and
8i2u1 = (u(@id)Q — 8izd) M pe™re,

Therefore, we obtain for « near 0€2, say = € ), = {:v €Q|d(x) < %}, that
3
g+ Auy = =AM + ()\ + Z(@id)Q - uAd) Me+d
i=1
1

> =AM + 5/\M

= —lAM >0

= -3 ,

provided that = € 2, and v = %, where p is sufficiently small from which it follows
that e approaches to 1 (In fact, we have e™! < e7#¢ < 1 for all z € ), also the



continuity of Ad and 0;d over 527 which implies that they are uniformly bounded
on €, namely there exists a constant K such that |9;d| + |Ad| < K.

The above computations motivate us to construct a sub-solution as follows:
Choose the two positive constants M, C' such that C' << M. Then we have

Using the property that max{f, g} is a sub-solution if f,g are sub-solutions
(see also Theorem 5.12 in the lecture notes), one can easily prove that u is a sub-
solution. to the Helmholtz equation, satisfying u|so = 0. It remains to show that
uy is a sub-solution.

Since d may be not differentiable at « which is not near the boundary, we employ
an approximate procedure. One way is to apply the Weierstrass theorem which
says that a continuous function can be approximated by a polynomial sequence.
Another is to use the convolution introduced in the lecture. Here we use the latter
one. Taking a function ¢. € Cy such that [, ¢.dz = 1, the support of p.(z) is
B.(0). It is not difficult to prove that

[ @ € Coo(R™),

if f € Ly10(R™). Applying this to function d which is Lipschitz continuous, hence
d e Li(), sodxp. € Cyu(2). Moreover, we have

d* . —d, in C(Q).
We now define a new function uj by
uj(z) =-M (1 - e‘“ds(’”))

Similar the computations carried out for u;, and choosing u suitably small (however
maybe depends on ¢ in this case) yield

3
Al +Au] = =AM + ()\ + p? Z(@ida)Q — uAd8> Me™+®
i=1
> =AM+ %)\M

1
= —-\M
5 > 0,

for any fixed e. From this one can conclude that uj is a sub-solution to Helmholtz

equation satisfying suitable boundary condition. Using again Theorem 5.12 in a
slightly general version (i.e. for infinitely many sub-solutions), we then conclude
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the limit, u;, of uj, is also a sub-solution to the Helmholtz equation satisfying the
zero boundary condition.

b) We now consider the case that A = 0. For this problem, the above technique
does not work. However it is valid for a new function v® which is defined by
v® = ety with a small parameter €. For simplicity we omit the upper-script ¢ till
we investigate its limit. Then one has

O = eeu+ 1o, O = e, for i #£ 1,

and
Olv = 2 u + 2ee™ Oyu + €M1 02u,  OPv = 1 0%u, for i # 1,

Thus
Av + 2e01v — 320 = 0.

There is a term in the equation, which involves the first order derivative 0;v.
However, from the argument in a) we see that this is not an essential difficulty.
Letting A = —3¢2, we see that this equation satisfies the requirement of a), i.e.
A < 0.

Therefore we can construct a sub-solution satisfying v¢|sq = 0, in a similar
manner as in a), for every fixed e. Then letting ¢ — 0 we get the limit function u
satisfying u|spo = 0 and wu is a sub-solution to the Helmholtz equation.



