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Solutions to the Exercises of Tutorial 06

1. Solution. It is easy to see that
u(x) = sin(mz)

is a solution to the problem. From sin(7w/2) = 1 we find that u(x) achieves its
maximum 1 at x = % € (0,1). Suppose that the maximum principle were true,
noting that in this case we have f =0 in (0,1) and

) = e =0

we then have

u(z) < max <0, maxu(x)) =0,
x€df)

and

> mi : _
u(z) > min (O, min u(x)) 0,

thus u = 0 in [0, 1] which is a contradiction.

If we employ the strong maximum principle, then u(x) achieves a positive
maximum 1 at an interior point = I, which contradicts u(z) < 0 or u(z) <
InaXxeagQLCr):: 0.

Therefore, the maximum principle fails for this equation.

2. Proof. We define
g(x) = u*(2),

then the equation can be rewritten as
Au—gu=f.

By a similar argument as in the proof of the maximum principle for the linear
equation, we can conclude easily that

u(z) < max (O, maxu(y)) ,if f(z) > 01in Q,
yeIN
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w(z) > min (0, min u(y)) ,if f(z) <0 in Q.

yEIN
We now prove the uniqueness of solution to the Dirichlet boundary value prob-
lem for this nonlinear equation. Define
w(z) = u(z) — v(z),
one derives that w satisfies
Aw —gw =0, in 2
and the boundary condition
w =0, on 0f2,

where g = u? + uv + v2. Note that f = 0. It is easy to prove that g is non-
negative, from which we know that the conditions for the maximum principle are
met. Therefore,

max w(y) = min w(y) = 0,

yedQ yEIN
thus
w(r) < max(0,0) =0,
and
w(z) > min(0,0) = 0,
SO

w(z) =0
for all z € Q, that is u = v on Q.

3. Proof. i) The proof is similar to that in the lecture by replacing the function |z|?
by eVt where N > 0 is a sufficiently large number. However we proceed here in a
different way. The key insight is that we can prove easily the maximum principle
in the case that f > 0 and we can construct a suitable perturbation of u, say v, so
that the right-hand side of the equation of v is strictly positive, and the difference
between the maxima of v and u converges to 0 as € goes to zero.

Step 1. Assume that the right hand side f is strictly positive in €.

Suppose that there exists xy € €2 such that u(zg) > 0 and

max u(z) = u(xg).

z€Q
At xg, there hold
ou 0%u
81'1'(3:0):0, 8—3312( 0) SO’ Z:L y 1L,

hence,

0 < San) = Buan) + " aulao)guln) — g(ao)ulzo) = Aulzo) —g(ao)uan) <0



This is a contradiction. Thus u can not achieve its positive maximum at a point
in €.

Step 2. Now we apply the maximum principle in the version in Step 1 to a
small perturbation of u, say v. Define

v(z) = u(z) + cw(x)

where w is a function to be determined. Straightforward computations yield
Av = Au + eAw 81)— au+s w,i=1,---.,n
= [} 8:1:‘1 - 8IZ a(L‘Z - I )

whence by using the equation of u we obtain

Av—}—iaia@i
= Au—i—Zal u—gu—l—a(Aw—l—Zala
= f—l—s(ijLZal W — gw)

v — gu

= f (1)
Now we make suitable choice of the function w. By continuity on © (Here we
assume that €2 is a bounded set) of g, a; for i = 1,--- | n, we can assume that there

exists a positive constant M such that
l9(z)|, ai(z)| <M, i=1.---.n

for all € Q. Defining
w(z) =e

here N is a constant such that N? > (N +1)M which is true for a sufficiently large
N . Thus

Aw—l—ZaZ

which yields 3

f(z) >0
for all z € Q. From (1) applying the assertion obtained in Step 1 to v we then
obtain

v(z) < max (o maxv(y)) ,

YyeIMN
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from which by definition we infer that

ute) + u(e) < max (0.max{u(y) + w@) ).

this holds for any positive €. Therefore, recalling that w is independent of £ and
taking limit as € — 0 one has

u(z) < max (o, irégéu(y)) .

Step 3. For the other assertion, Making a transformation w = —u, applying the
result in Step 2 to w, we obtain the conclusion for the case that f < 0.

ii) For the second part, the proof is the same as in the lecture. So we omit the
details.



