Prof. Dr. H. D. Alber

WS 07/08 AG 06, FB Mathematik
16. 11. 07 Tech. Univ. Darmstadt

Solutions to the Exercises of Tutorial 05

1. Proof. a) By definition we have
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thus recalling that [7,,(z) is entire, we obtain
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so we get L{zm T, (2)} = 2" Tn-1(2).
b) Again from the definition of the Bessel function we infer that
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We then make a transformation k — 1 =jie. k =7+ 1 to get
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To prove the third assertion of b), we employ assertion a). Computation yields

d m . m—1 d m __ .m
3 " In(2)} = me" T T (2) + - Tn(2)2" = 2" T (2),
dividing both sides of the above equality one has
2T (2) + mTn(2) = T (2).

This is the third assertion.

From the first and third assertions we obtain the second conclusion, and from

the first and second assertions, the fourth follows.

¢) We are now going to prove the last assertion. Similar to the lecture, we

introduce

Ui (1) = T (k). and wpy, ;(1) = Tn(kmj7),



Then wuy,,(r) (here [ = i, j) satisfies
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it is easy to see that A is not self-adjoint operator, and we can regard (k,,;)* as an

eigenvalue of it, since equation (1) can be rewritten as Aty (1) = (kpmi)*tmi (7).
We now multiply (1) (choosing I = %) by ru,, ;(r), integrate the resulting equa-

tion with respect to r over (0, 1) and use twice integration by parts to obtain
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Here we used the fact that k,,; (I =1, ) are zeros of J,,, from which it follows that
the bounary terms vanish. We also used the equation for u,, ;(r).
Whence we can obtain

1
((km,j)2 - (kmz)z) /0 Tum,ium,jdr =0,

which implies fol U i (T) U, j(1)dr = 0 provided (K ;)? # (km,i)?. And the proof
of ¢) is complete.

2. Proof. i) Using the fact that
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and choosing g = , we then have |¢| = < 1, thus
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So we prove the first part.

ii) Note that the assumption a,, = 0 for m < 0 can be met provided u®
is analytic. We regard f(Re?) in the Cauchy integral formula as u®(6), write
w = Re" and z = re?, then from the definition of I' we infer that
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= f(2).

Here we used i). It is easy to infer i) from the Cauchy integral formula. Q.E.D.

3. Proof. 1t is easy to see that g(t) is infinite times continuously differentiable for
any t which satisfies £ > 0 or ¢ < 0. We thus need only investigate the differentia-
bility, at ¢t = 0, of g(¢). To this end, we invoke a theorem: The exponent function
exp(z) grows, as * — +00, faster than any polynomial say P,(z), i.e.
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To prove this, we recall the expansion
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for any x > 0. Here m € Ny is arbitrary. Suppose the degree of P,(x) is n and the
coefficient of the principal term is a,, we then choose m > n and arrive at
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Step 1. We prove that ¢'(t) is continuous. We first calculate the derivative of it for
t>0and ¢t <0. It is easy to get ¢'(t) = 0 if ¢t < 0, while ¢'(t) = t%e_% = (t71)%g(t)
if £ > 0. Thus we can find a polynomial P;(t) = ¢? and write ¢'(t) = Pi(t7')g(t) if
t > 0. By using (2) we arrive at easily ¢'(t) — 0 as t — 07, thus

g(07) =0=4g'(0").

Step 2. Suppose that g(™(t) is continuous, and there exists a polynomial P, (t~*)
such that

ro={ g2 g

Step 3. Similar to Step 1 we can prove that g+ (t) is continuous.
Therefore, g(t) is infinite times continuous differentiable since ¢"(¢) is continu-
ous for any n € N.



