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Solutions to the Exercises of Tutorial 04

1. Proof. We employ the mathematical induction to prove the Leibniz formula.

Step 1. Suppose that a = 0. Then the left hand side is equal to D*(ug) = up
while § in the right hand side is equal to 0 since there hold a = 0 and 3 < «, thus
> s<a (g) DPu - D* By = up. Therefore, the Leibniz formula is true for a = 0.

Step 2. Let a satisfy |a| < k — 1 where k € N. Suppose the Leibniz formula is
true for this a.

Step 3. Now let a = v+ 6 where |y| < k—1 and || = 1, it is easy to see that 0
can take values in {6 € N | 377, ¢/ = 1} (This means that only one of ¢" is equal
to 1 and the others are equal to 0). Thus, applying step 2 we have

D*(ug) = D'D°(up) = D"y Dy, (up)

=1

= D7 z”: Dy, up + D7 z”: ulDy,p

=1

= Xn: > (g) D’Dyu-D" P+ Zn: > (g) D°u-D"PD,.o (1)

i=1 <y i=1 B<y
= Z (g) DPy - D* P,
BLa

Here, we used the formula that

(75) = (5)=(37)-6)

G—0 5 5 B

when we calculated the coefficient of the term DY ouD?¢ which comes from the
term D7D, uDP¢ with coefficient ( ﬁz 5), and the term DYuD"D,,¢ with coefficient
(g) in equality (1).

2. Proof. a) To prove uv € Hi((a, b)) for any given u,v € Hy((a,b)), we need only

prove that
[uv]| Lo((apy) < C and || De(uv)|| Lo(apy < C
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provided that [|ulls(ap) < C and |lullm(@p) < C, where we use the notation
| 122, ((a,y) for the norm of Hy((a, b)) which is defined by || f|| &, ((a,)) = (||f||%2((a’b)) +

| D f ”%2(((;,1;)))%' Making use the inequality listed in the hint of this exercise, we

obtain
b
/ luv|?dx < (Sup |u(z ) / lv|?dx < C.
a x€(a,b)

For the second assertion we use the Leibniz formula and conclude that D, (uv) =
(Dyu) v+ u (Dyv), thus

/|D uv 2dx<2</ |(Dyu)v 2dx—|—/|Dvu|2dx)
< 2<%up lv(x ) /|Du|2dx+2<qup |u(z ) /|DU| dx
z€(a,b) x€(a,b

< C.

Here, we used the elementary inequality (a + b)? < 2(a* + b%). So Hi((a,b)) is a
Banach algebra.

b) i) Choose a function u € C3(2). We are going to prove that u € C,(Q2) for
any > a. To this end, we write

[ullcay = lullze@) +sup  sup [u(z) = u()]
€ x#y, yeN |1’ — y|a
ul\r) —uly —u
= ||ul|zeo@) +sup sup L[(a)'-lx—ylﬁ
veQaty, yeo |7 — Y|
[u(z) = u(y)]

IA

Jull iy + Csup sup ¢
zeN x#y, ye Il‘ - y|

< COllufles @)

where C' is a constant depending on the diameter of ). From this we assert
|ullca@) < C which implies u € C,(€2).
ii) By assumption u € C,(£2) and v € C3(£2), we then obtain

luolloysy = vl +sup sup EVE) —ul)v@)]
z€Q x#y, yeN |£U — y|7

u(z) —u(y)| |v(x o
lelzoen Il +sup sup 1D = w@IR@I 0y
z€Q x#y, yeN |Z‘ - y|
o sp O @I
z€Q xHy, yeQ |$ - y|ﬂ
lallzw @ lollpaiy + C(lula + o))
lullewolwlose

here, we have used that |z — y|°=7, |+ —y|*™7 < C sincea —y >0 and 8 —v >0
by assumption v = min{«, 5}.
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iii) We calculate

[FO),(Q) =sup sup L@ = FE)

z€Q x#y, ye |l‘ - y|’y

|F(v(z)) = Fv(y))|

= sup sup

€Q v(x)#v(y), for z#y, yeQ II - y|’Y
F —F — >

v e @) = F@)] o) = o)

weQary, yeo  |v(@) —v(y)|® |z —yl

F —F — ¢

< ap wp VCETOO,, , (B0

z€Q v(x)#v(y), YyeN IU(-T) - U(y)| z€Q x#y, yeN |.I‘ - y|
< C.

Then it is easy to conclude that ||F(v)|c, @ < C. Q.E.D.

3. Solution. We say a function u € H;(Q2) is a weak solution to the Neumann
boundary value problem if for any v € H;(Q2) (or ¢ € C(2) ), the following
equality holds

—(Vau, V,u) + Mu,v) = (f,v). (2)

i) Suppose that v € C5(2) N C1(Q2) is a classical solution to the Neumann
boundary value problem (NBVP), we will prove that u satisfies (2). Multiplying
the Helmholtz equation by v € H;(€2), integrating by parts and making use of the
boundary condition we arrive at

(f,v) = AMu,v)+ (Au,v)
= Mu,v) — (Vyu, V,0) + /asz g—ZvdS
= Au,v) — (Vuu, V,v).

Therefore u is also a weak solution to the (NBVP).

ii) We now assume that u € H;(2) is a weak solution to the (NBVP) and
u € C3(Q) NCL(Q), we will show that u is classical. That means we need to prove
that the equation and the boundary conditions are satisfied. We first prove the
first assertion. Choose any test function v € %,(€) since &_ (Q2) C H1(£2). In this
case v vanishes at the boundary. Then from (2) by integration by parts we infer
that

ou

(f,v) = Mu,v) + (Au,v) — 8—nvdS = Au,v) + (Au,v),
o0

which is

(Au+ Au — f,v) =0.

This is still true for all v € () because &_(2) is dense in 4,(2). By the
fundamental lemma of calculus of variation we obtain

Au+ du— f=0,
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so the equation is satisfied.
Now we choose test functions in H;(€2), integrate by parts from (2) one then
has

(Au,v) — g—z vdS + Mu,v) = (f,v). (3)
o0

Since we have proved that the equation is satisfied, equation (3) is reduced to

ou
—vdS =0,
o0 On /

we restrict v to the boundary, then v|sq is an arbitrary continuous function defined
on 0f). Thus by the assertion of exercise 1 in Tutorial 1, we conclude that % =0,
so u is a classical solution to the Neumann boundary value problem. Q.E.D.

4. Proof. We write
[l = Jul - Jul®,

and choose d, d’ such that d = % and d' = ", so
q q(1-6)’

N
d'a

then apply the Holder inequality to get

Jwt = [ g o
< (L) oy
() ([

By the definition of L,(2)—norm i.e. || f]|z,@ = (Jq |f|pd:c)% for p > 1, taking the
1

g—th roots of the both sides of inequality (4), noting that the function z +— x4
(with = > 0 for p > 0), we then arrive at the inequality

ull L, < ||U||?:p(9)||u||;€)n)-



