

WS 07/08 09. 11. 07

AG 06, FB Mathematik Tech. Univ. Darmstadt

Solutions to the Exercises of Tutorial 04

1. Proof. We employ the mathematical induction to prove the Leibniz formula.

Step 1. Suppose that $\alpha=0$. Then the left hand side is equal to $D^{\alpha}(u\varphi)=u\varphi$ while β in the right hand side is equal to 0 since there hold $\alpha=0$ and $\beta\leq\alpha$, thus $\sum_{\beta\leq\alpha}\binom{\alpha}{\beta}D^{\beta}u\cdot D^{\alpha-\beta}\varphi=u\varphi$. Therefore, the Leibniz formula is true for $\alpha=0$.

Step 2. Let α satisfy $|\alpha| \leq k-1$ where $k \in \mathbb{N}$. Suppose the Leibniz formula is true for this α .

Step 3. Now let $\alpha = \gamma + \delta$ where $|\gamma| \le k - 1$ and $|\delta| = 1$, it is easy to see that δ can take values in $\{\delta \in \mathbb{N}_0^n \mid \sum_{j=1}^n \delta^j = 1\}$ (This means that only one of δ^i is equal to 1 and the others are equal to 0). Thus, applying step 2 we have

$$D^{\alpha}(u\varphi) = D^{\gamma}D^{\delta}(u\varphi) = D^{\gamma}\sum_{i=1}^{n}D_{x_{i}}(u\varphi)$$

$$= D^{\gamma}\sum_{i=1}^{n}D_{x_{i}}u\varphi + D^{\gamma}\sum_{i=1}^{n}uD_{x_{i}}\varphi$$

$$= \sum_{i=1}^{n}\sum_{\beta\leq\gamma}\binom{\gamma}{\beta}D^{\beta}D_{x_{i}}u \cdot D^{\gamma-\beta}\varphi + \sum_{i=1}^{n}\sum_{\beta\leq\gamma}\binom{\gamma}{\beta}D^{\beta}u \cdot D^{\gamma-\beta}D_{x_{i}}\varphi \quad (1)$$

$$= \sum_{\beta\leq\alpha}\binom{\alpha}{\beta}D^{\beta}u \cdot D^{\alpha-\beta}\varphi.$$

Here, we used the formula that

$$\begin{pmatrix} \gamma \\ \beta - \delta \end{pmatrix} + \begin{pmatrix} \gamma \\ \beta \end{pmatrix} = \begin{pmatrix} \gamma + \delta \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

when we calculated the coefficient of the term $D^{\gamma+\delta}uD^{\beta}\phi$ which comes from the term $D^{\gamma}D_{x_i}uD^{\beta}\phi$ with coefficient $\binom{\gamma}{\beta-\delta}$, and the term $D^{\gamma}uD^{\beta}D_{x_i}\phi$ with coefficient $\binom{\gamma}{\beta}$ in equality (1).

2. Proof. a) To prove $uv \in H_1((a,b))$ for any given $u,v \in H_1((a,b))$, we need only prove that

$$||uv||_{L_2((a,b))} \le C$$
 and $||D_x(uv)||_{L_2((a,b))} \le C$

provided that $||u||_{H_1((a,b))} \leq C$ and $||u||_{H_1((a,b))} \leq C$, where we use the notation $||\cdot||_{H_1((a,b))}$ for the norm of $H_1((a,b))$ which is defined by $||f||_{H_1((a,b))} = (||f||_{L^2((a,b))}^2 + ||D_x f||_{L^2((a,b))}^2)^{\frac{1}{2}}$. Making use the inequality listed in the hint of this exercise, we obtain

$$\int_a^b |uv|^2 dx \le \left(\sup_{x \in (a,b)} |u(x)|\right)^2 \int_a^b |v|^2 dx \le C.$$

For the second assertion we use the Leibniz formula and conclude that $D_x(uv) = (D_x u) v + u(D_x v)$, thus

$$\int_{a}^{b} |D_{x}(uv)|^{2} dx \leq 2 \left(\int_{a}^{b} |(D_{x}u)v|^{2} dx + \int_{a}^{b} |(D_{x}v)u|^{2} dx \right)$$

$$\leq 2 \left(\sup_{x \in (a,b)} |v(x)| \right)^{2} \int_{a}^{b} |D_{x}u|^{2} dx + 2 \left(\sup_{x \in (a,b)} |u(x)| \right)^{2} \int_{a}^{b} |D_{x}v|^{2} dx$$

$$< C.$$

Here, we used the elementary inequality $(a+b)^2 \leq 2(a^2+b^2)$. So $H_1((a,b))$ is a Banach algebra.

b) i) Choose a function $u \in C_{\beta}(\Omega)$. We are going to prove that $u \in C_{\alpha}(\Omega)$ for any $\beta \geq \alpha$. To this end, we write

$$||u||_{C_{\alpha}(\Omega)} = ||u||_{L_{\infty}(\Omega)} + \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

$$= ||u||_{L_{\infty}(\Omega)} + \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \frac{|u(x) - u(y)|}{|x - y|^{\beta}} \cdot |x - y|^{\beta - \alpha}$$

$$\leq ||u||_{L_{\infty}(\Omega)} + C \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \frac{|u(x) - u(y)|}{|x - y|^{\beta}}$$

$$\leq C||u||_{C_{\beta}(\Omega)},$$

where C is a constant depending on the diameter of Ω . From this we assert $||u||_{C_{\alpha}(\Omega)} \leq C$ which implies $u \in C_{\alpha}(\Omega)$.

ii) By assumption $u \in C_{\alpha}(\Omega)$ and $v \in C_{\beta}(\Omega)$, we then obtain

$$||uv||_{C_{\gamma}(\Omega)} = ||uv||_{L_{\infty}(\Omega)} + \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \frac{|u(x)v(x) - u(y)v(y)|}{|x - y|^{\gamma}}$$

$$\leq ||u||_{L_{\infty}(\Omega)} ||v||_{L_{\infty}(\Omega)} + \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \frac{|u(x) - u(y)| |v(x)|}{|x - y|^{\alpha}} |x - y|^{\alpha - \gamma}$$

$$+ \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \frac{|v(x) - v(y)| |u(y)|}{|x - y|^{\beta}} |x - y|^{\beta - \gamma}$$

$$\leq ||u||_{L_{\infty}(\Omega)} ||v||_{L_{\infty}(\Omega)} + C([u]_{\alpha} + [v]_{\beta})$$

$$\leq ||u||_{C_{\alpha}(\Omega)} ||v||_{C_{\beta}(\Omega)},$$

here, we have used that $|x-y|^{\beta-\gamma}$, $|x-y|^{\alpha-\gamma} \le C$ since $\alpha-\gamma \ge 0$ and $\beta-\gamma \ge 0$ by assumption $\gamma = \min\{\alpha, \beta\}$.

iii) We calculate

$$\begin{split} &[F(v)]_{\gamma}(\Omega) = \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \frac{|F(v(x)) - F(v(y))|}{|x - y|^{\gamma}} \\ &= \sup_{x \in \Omega} \sup_{v(x) \neq v(y), \ \text{for} \ x \neq y, \ y \in \Omega} \frac{|F(v(x)) - F(v(y))|}{|x - y|^{\gamma}} \\ &= \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \frac{|F(v(x)) - F(v(y))|}{|v(x) - v(y)|^{\alpha}} \frac{|v(x) - v(y)|^{\alpha}}{|x - y|^{\gamma}} \\ &\leq \sup_{x \in \Omega} \sup_{v(x) \neq v(y), \ y \in \Omega} \frac{|F(v(x)) - F(v(y))|}{|v(x) - v(y)|^{\alpha}} \sup_{x \in \Omega} \sup_{x \neq y, \ y \in \Omega} \left(\frac{|v(x) - v(y)|}{|x - y|^{\beta}}\right)^{\alpha} \\ &\leq C. \end{split}$$

Then it is easy to conclude that $||F(v)||_{C_{\gamma}(\Omega)} \leq C$. Q.E.D.

3. Solution. We say a function $u \in H_1(\Omega)$ is a weak solution to the Neumann boundary value problem if for any $v \in H_1(\Omega)$ (or $\varphi \in C_{\infty}(\Omega)$), the following equality holds

$$-(\nabla_x u, \nabla_x v) + \lambda(u, v) = (f, v). \tag{2}$$

i) Suppose that $u \in C_2^*(\Omega) \cap C_1(\overline{\Omega})$ is a classical solution to the Neumann boundary value problem (NBVP), we will prove that u satisfies (2). Multiplying the Helmholtz equation by $v \in H_1(\Omega)$, integrating by parts and making use of the boundary condition we arrive at

$$(f,v) = \lambda(u,v) + (\Delta u,v)$$

$$= \lambda(u,v) - (\nabla_x u, \nabla_x v) + \int_{\partial\Omega} \frac{\partial u}{\partial n} v dS$$

$$= \lambda(u,v) - (\nabla_x u, \nabla_x v).$$

Therefore u is also a weak solution to the (NBVP).

ii) We now assume that $u \in H_1(\Omega)$ is a weak solution to the (NBVP) and $u \in C_2^*(\Omega) \cap C_1(\overline{\Omega})$, we will show that u is classical. That means we need to prove that the equation and the boundary conditions are satisfied. We first prove the first assertion. Choose any test function $v \in {}^0_{H_1}(\Omega)$ since ${}^0_{C\infty}(\Omega) \subset H_1(\Omega)$. In this case v vanishes at the boundary. Then from (2) by integration by parts we infer that

$$(f,v) = \lambda(u,v) + (\Delta u,v) - \int_{\partial\Omega} \frac{\partial u}{\partial n} v dS = \lambda(u,v) + (\Delta u,v),$$

which is

$$(\Delta u + \lambda u - f, v) = 0.$$

This is still true for all $v \in {}^0_{H_1}(\Omega)$ because ${}^0_{C_{\infty}}(\Omega)$ is dense in ${}^0_{H_1}(\Omega)$. By the fundamental lemma of calculus of variation we obtain

$$\Delta u + \lambda u - f = 0,$$

so the equation is satisfied.

Now we choose test functions in $H_1(\Omega)$, integrate by parts from (2) one then has

$$(\Delta u, v) - \int_{\partial \Omega} \frac{\partial u}{\partial n} v dS + \lambda(u, v) = (f, v). \tag{3}$$

Since we have proved that the equation is satisfied, equation (3) is reduced to

$$\int_{\partial \Omega} \frac{\partial u}{\partial n} \, v dS = 0,$$

we restrict v to the boundary, then $v|_{\partial\Omega}$ is an arbitrary continuous function defined on $\partial\Omega$. Thus by the assertion of exercise 1 in Tutorial 1, we conclude that $\frac{\partial u}{\partial n}=0$, so u is a classical solution to the Neumann boundary value problem. Q.E.D.

4. Proof. We write

$$|u|^q = |u|^{q\theta} \cdot |u|^{q(1-\theta)},$$

and choose d, d' such that $d = \frac{p}{q\theta}$ and $d' = \frac{r}{q(1-\theta)}$, so

$$\frac{1}{d} + \frac{1}{d'} = 1,$$

then apply the Hölder inequality to get

$$\int_{\Omega} |u|^{q} = \int_{\Omega} |u|^{q\theta} |u|^{q(1-\theta)}$$

$$\leq \left(\int_{\Omega} |u|^{q\theta d} \right)^{\frac{1}{d}} \left(\int_{\Omega} |u|^{q(1-\theta)d'} \right)^{\frac{1}{d'}}$$

$$= \left(\int_{\Omega} |u|^{p} \right)^{\frac{1}{d}} \left(\int_{\Omega} |u|^{r} \right)^{\frac{1}{d'}} \tag{4}$$

By the definition of $L_p(\Omega)$ —norm i.e. $||f||_{L_p(\Omega)} = (\int_{\Omega} |f|^p dx)^{\frac{1}{p}}$ for $p \geq 1$, taking the q—th roots of the both sides of inequality (4), noting that the function $x \mapsto x^{\frac{1}{q}}$ (with $x \geq 0$ for p > 0), we then arrive at the inequality

$$||u||_{L_q(\Omega)} \le ||u||_{L_n(\Omega)}^{\theta} ||u||_{L_r(\Omega)}^{1-\theta}$$
.