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Solutions to the Exercises of Tutorial 03

1. Solution. Suppose that u is a solution to the eigenvalue problem. Integrating
the equation over (2 and making use of the boundary condition yields

u’|z+)\/udx:0.
Q

/udx:()
Q

provided that A # 0. This is the necessary condition for the existence of solution
to this problem with A # 0.

To solve this problem, we consider first A = 0, for which we have the general
solutions

Thus we have

u(ac) = Cl.I + CQ.

So u/(x) = C4. By the boundary conditions we assert that C; = 0. Therefore,
u(z) = Cy.
If A # 0, the general solutions become

u(z) = CreV ™" 4 Che V7,

and
W' (z) = Civ/=AeV ™ — Cp/= e Ve
By the boundary conditions we thus obtain
CheV 2" — Che VA0 =,
Cle\/j/\b — Cge_mb = 0.

To guarantee non-trivial solutions to the above linear system of (Cy, Cs), the de-
terminant of its coefficient matrix must vanish, which requires
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so the eigenvalues are

2
)\m—<ﬂm) , for m € N.
b—a

and the corresponding eigenfunctions are

Unm () = coS (b”m (z — a)> .

—a

(A straightforward computation shows the necessary condition is met.) Similar
to the argument in the lecture, it is easy to show {u,,}>°_, is a complete basis in

L2(Q).

2. Proof. Roughly speaking, the regularity of solutions to a well-posed problem
of a PDE means the solutions become more regular provided that the given data
(such as initial data, boundary data, or the given function(s) in the equation) is
more regular.

Assume that u is a classical solution to the boundary value problem in excer-
cise 2, from this we only know that u € Cy(Q) N C(€) and u satisfies the equation
and the boundary conditions. No any information is known on the derivatives of
order which is greater than 2. However we can obtain higher regularity of this

solution from the equation and the assumption that f € C,,(Q2) by the bootstrap
argument and the difference quotient technique.

Step 1. Let m = 0. So we have f, u € Cy(£2). From the equation we can obtain
easily that u” € Cy(€2) which implies also that u' € Cy(Q2) since we have v/(z) =
u'(a) + [T u”(y)dy. Whence,

(IS CQ(Q)

Step 2. Let m = 1, this means f € C1(2). We define for a continuous function
g : {2 — R the difference quotient

gn(z) = 9(z + h})L — g(x)7 for h # 0.

Choose a point x € € (The case that = € {2 is slightly different, the argument is
left to the reader.) Let h satisfy that h < 1 dist{z, 9Q} so that = + h € Q. Then

u(x4+h)+Xu(x+h) = flz+h),
W(@) + (@) = f@),

taking the difference of the above two equations and dividing the resulting equation
by h we get
(u")a(x) + Aun(z) = fulz),

The first term in this equation is well-defined since u” is continuous in €2. We infer
from the assumptions that

(u")n(x) = fu(x) = dup(z) — f'(z) = A’ (),
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as h — 0. Thus u"” + A/ = f" in Q, and v € C(Q2). Moreover, from the equation
we can conclude u” € C'(£2).
Step 3. Suppose the conclusion is true for m = k — 1 with &k € N. Define

v=DF1lu, g=DF'f.

Repeating the procedure in Step 2 for v and g, we prove easily the assertion for
arbitrary m € N.

3. Proof. Let p € &_ (92) be a test function. We have
(D:r(cf)a 90) = _(Cfa Dx(p) = _C(fa DCESD) = C(Da:fa 90) = (CD:cf7 Sp)a
so D,(cf) = cD,f. We write

(Dx(f—i—g),@) = _(f+g7 Da:(p) = _(f7 Dx(p) - (ganSO)
= (Daf.) + (Dag. ) = (Dof + Dag, ),

thus the second assertion is proved. Since p € &__(£2) one has
D,D,p = DyD,op.
Thus
(Do Dyu, p) = (u, DyDyp) = (u, Dy Dyp) = (DyDyu, ),
from which we prove D,D,u = D,D,u.

4. Proof. Note that X = span{f,}aer is a sub-space of L? using the projection
theorem we conclude that there exists a point Pf € X such that

(f—=Pf,x)=0, forall z € X. (1)
Thus
If ==l = II(f =P+ (Pf—2)|
= |f =PAP+(f=PfPf—a)+(Pf—af—Pf)+|Pf -]
= [lf =PfP+|Pf— 2|
1S =PI,

the equality holds only if z = Pf. Suppose that Pf = Y _puqfo, inserting this
into (1) and replacing = by f, with o € E, yield

0= (f - Zuafavfa) - (f: fa) - Ua(faafa) = (fv fa) — Uq,

acE

v

whence u, = (f, fo) = co for a € E.

5. Solution. We first prove the uniqueness. If there are two pairs (yi,yi) and
(y2,v3), such that
z =yl +yl, and = = y? + 42
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Thus (y1 — yi) + (y2 — ¥3) = 0. So

(i — vyt —vi) = —(ya —v3,y1 —y;) =0,

which implies that ||yf — yi||* = 0, thus

yi = i, also ys = y3.

And the uniqueness follows.

Next we prove the existence of such a decomposition for any x € X. There are
two cases that should be taken into account.

i) Assume that z € Y. Just write x = y; + 0, done.

ii) The case that x € Y. By the projection theorem, we assert that there exists
a point Px € Y such that

(x — Pz,y) =0, forally € Y.

We now write # = (z — Px) + P, clearly,  — Pz € Y+ and Pz € Y, thus we get
the representation, i.e. o = y; + 1y, with y; € Y+, 3, €Y.
Therefore, form the above argument we have X =Y + Y+,

Remark. The operator P is a projection operator upon Y, such that P? = P.



