Prof. Dr. H. D. Alber

WS 07/08 19. 10. 07 AG 06, FB Mathematik Tech. Univ. Darmstadt

Solutions to the Exercises of Tutorial 01

1. a) *Proof.* We employ the argument of contradiction. Assume that there exists at least one point, say $x_0 \in [a, b]$, such that

$$f(x_0) \neq 0. \tag{1}$$

Without loss of generality, we may assume that

$$f(x_0) > 0$$
.

By continuity of f, we assert that there exists a small positive number ε which satisfies

$$f(x) > 0$$
, for all $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$.

Thus

$$f(x) \ge \min_{x \in \left[x_0 - \frac{\varepsilon}{2}, x_0 + \frac{\varepsilon}{2}\right]} f(x) > 0$$
, for all $x \in \left[x_0 - \frac{\varepsilon}{2}, x_0 + \frac{\varepsilon}{2}\right]$.

Next we are going to construct a suitable test function φ that vanishes at the boundary x = a, b. We consider the case that $x_0 \in (a, b)$. When $x_0 = a$ or b, we can treat it in a slightly different way.

$$\varphi(x) = \begin{cases} 0, & \text{for } a \le x < x_0 - \varepsilon, \\ \frac{f(x_0)}{\varepsilon} (x - (x_0 - \varepsilon)) & \text{for } x_0 - \varepsilon \le x < x_0, \\ -\frac{f(x_0)}{\varepsilon} (x - (x_0 + \varepsilon)) & \text{for } x_0 \le x < x_0 + \varepsilon, \\ 0, & \text{for } x_0 + \varepsilon < x < b. \end{cases}$$

(see Pic. 1) Therefore one obtains that

$$\varphi(x) \ge \frac{f(x_0)}{2}$$
, for $x \in \left[x_0 - \frac{\varepsilon}{2}, x_0 + \frac{\varepsilon}{2}\right]$,

whence

$$\int_{a}^{b} f(x)\varphi(x)dx = \int_{x_{0}-\varepsilon}^{x_{0}+\varepsilon} f(x)\varphi(x)dx \ge \int_{x_{0}-\frac{\varepsilon}{2}}^{x_{0}+\frac{\varepsilon}{2}} f(x)\varphi(x)dx$$

$$\ge \int_{x_{0}-\frac{\varepsilon}{2}}^{x_{0}+\frac{\varepsilon}{2}} \left(\min_{x \in [x_{0}-\frac{\varepsilon}{2},x_{0}+\frac{\varepsilon}{2}]} f(x) \right) \cdot \frac{f(x_{0})}{2} dx$$

$$= \varepsilon \cdot \frac{f(x_{0})}{2} \cdot \min_{x \in [x_{0}-\frac{\varepsilon}{2},x_{0}+\frac{\varepsilon}{2}]} f(x)$$

$$\ge 0, \qquad (2)$$

this contradicts to $\int_a^b f(x)\varphi(x)dx = 0$. So assumption (1) is wrong. Q. E. D. b) Solution. In this case, we can only conclude that

$$f(x) = 0$$
, for all $x \in \Omega$,

however it is allowed that f differs from zero on the boundary.

2. Proof. We first check that the initial data are satisfied. Let $\xi = x + ct$, and $\eta = x - ct$. From the d'Alembert formula, one can obtain easily

$$u(x,0) = \frac{1}{2} (u_0(x) + u_0(x)) + \frac{1}{2c} \int_x^x u_1(\xi) d\xi = u_0(x),$$

and

$$u_{t}(x,0) = \frac{1}{2} \left(u'_{0}(\xi) \frac{\partial \xi}{\partial t} \Big|_{t=0} + u'_{0}(\eta) \frac{\partial \xi}{\partial t} \Big|_{t=0} \right) + \frac{1}{2c} \left(u_{1}(\xi) \frac{\partial \xi}{\partial t} - u'_{1}(\eta) \frac{\partial \eta}{\partial t} \right) \Big|_{t=0}$$

$$= \frac{1}{2} (cu'_{0}(x) - cu'_{0}(x)) + \frac{1}{2c} (cu_{1}(x) + cu_{1}(x))$$

$$= u_{1}(x).$$
(3)

Straightforward computations yield

$$u_{tt} = \frac{c^2}{2} (u_0''(x+ct) + u_0''(x-ct)) + \frac{c}{2} (u_1'(x+ct) - u_1'(x-ct))$$

$$u_{xx} = \frac{1}{2} (u_0''(x+ct) + u_0''(x-ct)) + \frac{1}{2c} (u_1'(x+ct) - u_1'(x-ct)),$$

from which it follows that

$$u_{tt} - c^2 u_{xx} = 0.$$

Thus the wave equation is satisfied.

How to get the **d'Alembert** formula? One approach is to make use of the ansatz u(x,t) = f(x+ct) + g(x-ct) and the initial data.

$$u_0(x) = u(x,0) = f(x) + g(x), \quad u_1(x) = u_t(x,0) = c(f'(x) - g'(x)).$$
 (4)

Next we solve f, g in terms of u_0, u_1 . To this end, we integrate the second equation in (4) to get

$$f(x) - g(x) = \frac{1}{c} \int_{-\infty}^{\infty} u_1(\xi) d\xi + C,$$

here C is a constant. Combination with the first equation in (4) yields

$$f(x) = \frac{1}{2} \left(u_0(x) + \frac{1}{c} \int^x u_1(\xi) d\xi + C \right), \ g(x) = \frac{1}{2} \left(u_0(x) - \frac{1}{c} \int^x u_1(\xi) d\xi - C \right).$$

Then from the ansatz we get

$$u(x,t) = \frac{1}{2} \left(u_0(x+ct) + \frac{1}{c} \int_{-\infty}^{x+ct} u_1(\xi) d\xi + C \right)$$

$$+ \frac{1}{2} \left(u_0(x-ct) - \frac{1}{c} \int_{-\infty}^{x-ct} u_1(\xi) d\xi - C \right)$$

$$= \frac{1}{2} \left(u_0(x+ct) + u_0(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} u_1(\xi) d\xi,$$
 (5)

which is the d'Alembert formula.

3. Proof. i) Since we assume that u = u(x,t) is a twice continuously differentiable function, there holds

$$u_{xt} = u_{tx}$$
.

By definition we have

$$D_{+}D_{-}u = (D_{-}u)_{t} + c(D_{-}u)_{x} = (u_{t} - cu_{x})_{t} + c(u_{t} - cu_{x})_{x}$$

$$= u_{tt} - cu_{xt} + cu_{tx} - c^{2}u_{xx}$$

$$= u_{tt} - c^{2}u_{xx}.$$

Thus

$$\Box u = D_+ D_- u$$
.

In a same manner one can easily prove

$$\Box u = D_{-}D_{+}u$$
.

ii) Define $v = D_-u$, then we infer from $\Box u = 0$ and i) that $D_+v = 0$. On the other hand, from $v = D_-u$, $D_+v = 0$ one has $\Box u = 0$. That is $\Box u = 0$ is equivalent to $v = D_-u$, $D_+v = 0$.