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Solutions to the Exercises of Tutorial 01

1. a) Proof. We employ the argument of contradiction. Assume that there exists
at least one point, say xg € [a, b], such that

f(zo) # 0. (1)

Without loss of generality, we may assume that

f(l'()) > 0.

By continuity of f, we assert that there exists a small positive number ¢ which
satisfies
f(z) >0, for all x € (xg — £, 29 + €).

Thus
f(z) > min f(z) >0, forall z € [mo—i,xo—l—i :
xe[mo—%yxo-i-%] 2 2
Next we are going to construct a suitable test function ¢ that vanishes at the
boundary = = a,b. We consider the case that xo € (a,b). When zy = a or b, we
can treat it in a slightly different way.

e

, for a<z<zy—2¢,
(@) = f(ZO)(gC — (29 —¢)) for mg—e <z <,
¥ _ f(=o) (x—(zog+¢e)) for zg<x<z+e8,

3

0, for zg+e<ax<b.

(see Pic. 1) Therefore one obtains that

f(zo) € €
2 )

p(r) >



whence

/a fa)p()de = /+ 2)de > /+ f(@)p()dz
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> 0, (2)

this contradicts to fab f(z)p(x)dz = 0. So assumption (1) is wrong. Q. E. D.
b) Solution. In this case, we can only conclude that

f(z) =0, for all x € Q,

however it is allowed that f differs from zero on the boundary.

2. Proof. We first check that the initial data are satisfied. Let & = z + ct, and
n =z — ct. From the d’Alembert formula, one can obtain easily

1

u(z,0) = 3 (uole) + o) + 5- / "y (€)de = u (),

and

1 0 0 1 i) ]
u(@0) = 5 (O 5+ b lca) + 5 (@ — i) o

1, , 1
= leup(@) — cup(@)) + o (ewi(w) + cur(2))

= w(z). (3)

Straightforward computations yield

2

Uy = % (ug(z + ct) + ug(x — ct)) + g (uy(x + ct) — uf(z — ct))
1 1

Upp =5 (ug(x + ct) + ug(x — ct)) + % (uy(z + ct) — uj(x — ct)),

from which it follows that
Uy — gy = 0.

Thus the wave equation is satisfied.
How to get the d’Alembert formula? One approach is to make use of the
ansatz u(x,t) = f(xz + ct) + g(z — ct) and the initial data.

uo(z) = u(,0) = f(z) + 9(z).  wi(z) = u(x,0) = c(f'(z) — ¢'(x)). (4)



Next we solve f, g in terms of ug, u;. To this end, we integrate the second equation
in (4) to get

fla) =) = [ w(e)ag+C.

here C' is a constant. Combination with the first equation in (4) yields

fla) = (w(m) w1 [ wlede+ C) glw) == (uO(w) — 1 [ wlere- 0) .

Then from the ansatz we get
1 1 x+ct
u(z,t) = 3 <u0(a: + ct) + E/ uy (&)d€ + C’)
1 1 r—ct
+§ up(z —ct) — —/ uy(§)dé — C

C
x+ct

(o + ) + ol — cb)) + % / i (€)dE, (5)

r—ct

N =

which is the d’Alembert formula.
3. Proof. i) Since we assume that u = u(z,t) is a twice continuously differentiable
function, there holds

Ugt = Uty

By definition we have
DD u = (D u)+c(D u)y = (uy — cug)e + c(up — cug),

2
= Uy — ClUgt + ClUpy — C Uy

_ 2
= Uy — C Ugy-

Thus
Uu = Dy D_u.

In a same manner one can easily prove
Uu = D_D,u.

ii) Define v = D_u, then we infer from Ou = 0 and i) that Dyv = 0. On the
other hand, from v = D_u, D,;v = 0 one has Ou = 0. That is Ou = 0 is equivalent
tov=D_u, Dyv=0.



