

WS 07/08 18. 01. 08 AG 06, FB Mathematik Tech. Univ. Darmstadt

Partial Differential Equations I: Linear Theory Tutorial 12: Exercises¹

This tutorial is concerned with the properties of bounded linear operators, and of compact operators.

1. Let X be a Banach space. Let $K: X \to X$ be a linear operator. K is called bounded, if there is C > 0 with

$$||Kx|| \le C||x||$$

for all $x \in X$. For a bounded operator define

$$||K|| = \sup_{x \in X, x \neq 0} \frac{||Kx||}{||x||}.$$

The number ||K|| is called the norm of K. Check that this is a norm on the linear space of all bounded linear operators $K: X \to X$.

- **2.** Let X be a Banach space and $\mathcal{B}(X,X)$ be the space of bounded linear operators $K:X\to X$ with a norm defined in problem 1. Prove that $\mathcal{B}(X,X)$ is complete with this norm.
- **3.** Assume that $K: X \to X$ is a bounded linear operator with

Show that I - K is invertible and

$$(I - K)^{-1} = \sum_{n=0}^{\infty} K^n.$$

¹If you have any opinion and/or suggestion on the Tutorial, please send your email to Prof. Dr. H.-D. Alber at alber@mathematik.tu-darmstadt.de, or to Dr. P. Zhu at zhu@mathematik.tu-darmstadt.de.

The following problem is your homework.

3. Let K = K(x,y) be a real or complex-valued continuous function defined in the closure of a bounded domain $\Omega \times \Omega \subset \mathbb{R}^n \times \mathbb{R}^n$. Show that the integral operator K defined by

$$(Kf)(x) = \int_{\bar{\Omega}} K(x,y)f(y)dy$$

is compact as an operator from $C(\bar{\Omega})$ to $C(\bar{\Omega})$.

4. The product of a compact operator with a bounded operator is compact. More precisely, let $T \in \mathcal{B}(X,Y)$ be compact, and let $A \in \mathcal{B}(Y,Z)$ and $B \in \mathcal{B}(W,X)$ be bounded. Then $AT \in \mathcal{B}(X,Z)$ and $TB \in \mathcal{B}(W,Y)$ are compact.