

WS 07/08 09. 11. 07 AG 06, FB Mathematik Tech. Univ. Darmstadt

Partial Differential Equations I: Linear Theory Tutorial 04: Exercises¹

This tutorial is concerned with the Leibnitz formula for weak derivatives, some properties of the Sobolev spaces, and with a Neumann boundary value problem for the Helmholtz equation. As an application of Hölder's inequality we prove an interpolation inequality as a homework problem. Let $n \in \mathbb{N}_0$, let Ω be an open bounded set in \mathbb{R}^n with smooth boundary.

1. Let α, β be two multi-indices. We say $\alpha \geq \beta$ provided $\alpha_i \geq \beta_i$ for all $i = 1, 2, \dots, n$. We denote $\alpha! = \alpha_1! \cdot \alpha_2! \cdots \alpha_n!$ and if $\alpha \geq \beta$,

$$\binom{\alpha}{\beta} = \frac{\alpha!}{(\alpha - \beta)! \, \beta!} = \binom{\alpha_1}{\beta_1} \cdots \binom{\alpha_n}{\beta_n}.$$

Let $m \in \mathbb{N}$. Assume that $u \in H_m(\Omega)$, $\varphi \in C_{\infty}^*(\Omega)$. Prove for all α with $|\alpha| \leq m$, the Leibniz formula holds

$$D^{\alpha}(u \cdot \varphi) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\beta} u \cdot D^{\alpha - \beta} \varphi.$$

2. a) Let X be a Banach space. We call X a Banach algebra, if for any u, v of X, their product $u \cdot v$ is also an element of X.

Let (a, b) be an interval, where a < b. Prove that $H_1((a, b))$ is a Banach algebra, that is for $u, v \in H_1((a, b))$ there holds

$$u \cdot v \in H_1((a,b)).$$

(**Hint.** Use the Leibnitz formula in problem 1 and an inequality proved in the lecture, i.e. $|u(x)| \leq r^{\frac{1}{2}} ||u'||_{(a,b)} + r^{-\frac{1}{2}} ||u||_{(a,b)}$ for all $0 < r \leq b - a$. This result

¹If you have any opinion and/or suggestion on the Tutorial, please send your email to Prof. Dr. H.-D. Alber at alber@mathematik.tu-darmstadt.de, or to Dr. P. Zhu at zhu@mathematik.tu-darmstadt.de.

can be generalized. Namely, $H_m(\Omega)$ is a Banach algebra for $m > \frac{n}{2}$, where n is the dimension of domain Ω .)

- b) Let $\alpha, \beta \in (0, 1)$. Suppose that $u \in C_{\alpha}(\Omega)$, $v \in C_{\beta}(\Omega)$ and that $F : \mathbb{R} \to \mathbb{R}$ is a Hölder continuous function with exponent α . Show that
 - i) $C_{\beta}(\Omega) \subset C_{\alpha}(\Omega)$, if $\beta \geq \alpha$,
 - ii) $u \cdot v \in C_{\gamma}(\Omega)$, where $\gamma = \min\{\alpha, \beta\}$,
 - iii) $F(v) \in C_{\gamma}(\Omega)$, where $\gamma = \alpha \cdot \beta$.
- 3. Consider the Neumann boundary value problem for the Helmholtz equation

$$\Delta u + \lambda u = f, \text{ in } \Omega,$$

 $\frac{\partial u}{\partial n} = 0, \text{ on } \partial \Omega.$

Here n is the outward normal vector, λ is a given number and $f \in L^2(\Omega)$ is a given function.

Define weak solutions for this problem, and show that a weak solution $u \in C_2^*(\Omega) \cap C_1(\overline{\Omega})$ is a classical solution to the above problem.

The following problem is your homework.

4. (An application of the Hölder inequality) Let $1 \le p < q < r$, such that

$$\frac{1}{q} = \frac{\theta}{p} + \frac{1-\theta}{r}$$

for some $\theta \in (0,1)$. If $u \in L_p(\Omega) \cap L_r(\Omega)$, then $u \in L_q(\Omega)$ and

$$||u||_{L_q(\Omega)} \le ||u||_{L_p(\Omega)}^{\theta} ||u||_{L_r(\Omega)}^{1-\theta}.$$

(**Hint.** To apply the Hölder inequality, we write $|u|^q = |u|^{q\theta} \cdot |u|^{q(1-\theta)}$, let $d = \frac{p}{q\theta}$ and $d' = \frac{r}{q(1-\theta)}$, then get $\frac{1}{d} + \frac{1}{d'} = 1$.)