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Partial Differential Equations I: Linear Theory

Tutorial 02: Exercises!

Beginning with some exercises for multi-indices, we will in this tutorial prove
the Duhamel Principle, the Young inequality and the Holder inequality, also we
are going to discuss an application of the Projection Theorem in Exercise 2. Let
us first introduce some
Notations: Let a, o; € Nj be multi-indices, here ¢ = 0,1,--- ,nand n € N, Ny =
NuU {0}. For a = (a',-+-,a") with o/ € Ny,j = 1,--- ,n, we define for z € R",
DY =02 -9,

C3(RR?) is the set of real functions that have continuous derivatives up to third
order.

1. Assume that u = u(z) is a real function in C3(R?) and ¢, () are the coefficient
functions. By introducing the multi-index, we can simplify considerably the writing

of an operator. For instance, the first order linear operator }_, o ca(z) Du(z)

includes many single terms like co, () 2% (i = 1,2, ,n) and cay(z)u. Here, the

i-th component of o; is 1 and the others are 0, while all components of aq are 0.
More precisely, we have

Z Co(2)DU(T) = Cop(z)u + Z Cq; (x)g—z

lo <1

a) Do not use the multi-index notation and rewrite the following operators

Z co(z)Du(x), Z co(z)D%u(x)

] <2 lof=3

as done in the above example.

f you have any opinion and/or suggestion on the Tutorial, please send your email to Prof.
Dr. H. D. Alber at alber@mathematik.tu-darmstadt.de, or to Dr. P. Zhu at zhu@Qmathematik.tu-
darmstadt.de.



b) Rewrite the following equations
U — gy =0, in RT X R;  Au =0, in R?
in the multi-index form and calculate the coefficient functions.
2. (Duhamel Principle) Consider the initial boundary value problem

U — Uy = f(x,1), @ € (0, £), t € (0, 00),
u|t=0 - 07 ut|t=0 = 07 (1)

Ulz=0 =0, u|y=¢ =0.
Let w = w(z, t;7) be a solution to the following problem

Wi — e =0, € (0,0), te(r,00),
Wi=r = 0, wWi|s=r = f(z,7),

Wgeo =0, w|z=¢ = 0.

Prove that

is a solution to Problem (1).

3. Let X be a Hilbert space over C and let Y be a closed subspace of X. Let
ze X \Y.
Find a bounded linear functional f : X — C such that

f(z) = 0, forall z €Y,
fz) = L

(Hint: Use the projection theorem.)

The following problem is your homework.

4. Suppose that a,b > 0 are real numbers, f,g are real functions defined in the
domain 2. Prove
a) the Young inequality
1 1 1 1
ab < —a? + -b?, and ab < —cPal + -7

p q p q
for any 1 < p,q < oo such that % + % = 1. Here, p is called the conjugate
exponent to ¢, and vice versa. And ¢ is an arbitrary positive number.
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b) and the Holder inequality

<(/ |f<x>|pd:c)’l’ (f |g<x>|qu)é-

(Hints: Approach 1. Apply the property that the exponent function f = exp(z)
is a convex function, i.e. f(Az+ (1 —N)y) < Af(x)+ (1 —=N)f(y), YA€ [0,1]. On

the other hand, we can write ab = exp(loga + logb) = exp (% log(a?) + %log(bq))

/Q f(@)g(a)da

where |f|?,|g|? are integrable.

Approach 2. Regard ab as the area of certain rectangle, then compare it with the
sum of the areas of the regions confined, respectively, by the graph of the function
f = 2P~ (on [0, a]) and the z-axis (from 0 to a), the graph of g = y?'(on [0,])
and the y-axis (from 0 to b). )

Remark: For the limit case p =1,¢ = 0o (or ¢ = 1, p = o0) the Young inequality
should be understood in the following way: the limit as p | 1 (which implies ¢ T o)
satisfies the Young inequality. For 0 <b <1, there holds lim,, (%ap + %bq) =aq; If
b > 1, we have lim,; (iap + %bq) = oo. Therefore, it is easy to see that for both
cases the Young inequality is valid. O



