

WS 07/08 19. 10. 07 AG 06, FB Mathematik Tech. Univ. Darmstadt

Partial Differential Equations I: Linear Theory Tutorial 1: Exercises¹

In this tutorial, I am going to present you some basic knowledge about partial differential equations, then give some exercises. In what follows, we assume that Ω is an open bounded interval, $\Omega=(a,b)$, and we denote its closure by $\overline{\Omega}$. Here a,b are two real numbers.

1. a) Suppose that f = f(x) is a real continuous function defined on $\overline{\Omega}$, which is given and satisfies

$$\int_{\Omega} f(x)\varphi(x)dx = 0 \tag{1}$$

for all real functions $\varphi : \overline{\Omega} \to \mathbb{R}$ with $\varphi(a) = \varphi(b) = 0$.

Then we have

$$f(x) = 0, \ \forall \ x \in \overline{\Omega}.$$

Prove the above assertion.

- b) If we assume weaker condition: f is continuous in Ω , what can we conclude?
- 2. (The d'Alembert formula) Consider the following initial value problem (IVP)

$$u_{tt} - c^2 u_{xx} = 0$$
, for all $(x, t) \in \mathbb{R} \times (0, +\infty)$,
 $u|_{t=0} = u_0$,
 $u_t|_{t=0} = u_1$,

where c is a positive constant and u_0, u_1 are two given continuous functions.

Suppose that the first and second order derivatives of u_0 and the first order derivative of u_1 are continuous. Prove that

$$u(x,t) = \frac{1}{2} (u_0(x+ct) + u_0(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} u_1(\xi) d\xi$$

¹If you have any opinion and/or suggestion on the Tutorial, please send your email to Prof. Dr. H. D. Alber at alber@mathematik.tu-darmstadt.de, or to Dr. P. Zhu at zhu@mathematik.tu-darmstadt.de.

is a solution to the above IVP.

Hint. Consider the ansatz u(x,t) = f(x+ct) + g(x-ct).

The following problem is your homework.

3. (Decomposition of the **d'Alembert** operator) Suppose that u = u(x,t) is a twice continuously differentiable function. Define $\Box u = u_{tt} - c^2 u_{xx}$ (\Box is called the **d'Alembert** operator), $D_+u = u_t + cu_x$ and $D_-u = u_t - cu_x$. Then the second order wave equation can be rewritten as

$$\Box u = 0. \tag{2}$$

Prove that (2) can be "factored" into

$$D_{+}D_{-}u = 0$$
, or $D_{-}D_{+}u = 0$,

moreover, if we introduce a new function $v = D_{-}u$, then the scalar equation (2) is equivalent to the following system of two first order equations:

$$\begin{cases} D_{+}v = 0, & i.e. \ v_{t} + cv_{x} = 0, \\ \\ D_{-}u = v, & i.e. \ u_{t} - cu_{x} = v. \end{cases}$$