Graphen und Algorithmen (WS 2007/2008)

Übungsblatt Nr. 5

15. November 2007

Aufgabe 5.1

Beweisen oder widerlegen Sie: Ein Graph G=(V,E) mit mindestens 2 Knoten ist genau dann ein Baum, wenn jeder Knotengrad mindestens 1 ist und für die Summe aller Knotengrade $\sum_{v \in V} \deg(v) = 2(|V|-1)$ gilt.

Aufgabe 5.2

Geben Sie einen Algorithmus an, der in O(|V|) bestimmt, ob ein Graph G = (V, E) ein Baum ist.

Aufgabe 5.3

Sei T=(V,E) ein Baum mit mindestens zwei Knoten und sei $V_3:=\{v\in V:\deg(v)\geq 3\}$. Zeigen Sie: T hat genau $2+\sum_{v\in V_3}(\deg(v)-2)$ viele Blätter.

Aufgabe 5.4

Wieviele Spannbäume enthält der Graph, der aus dem K_n entsteht, indem man eine beliebige Kante entfernt?

Aufgabe 5.5

Sei G = (V, E) ein zusammenhängender Graph, der kein Baum ist, und sei $v \in V$ ein Knoten. Ausgehend von v werden eine Tiefen- und eine Breitensuche gestartet, welche die Spannbäume $T_D = (V, E_D)$ bzw. $T_B = (V, E_B)$ von G erzeugen. Beweisen oder widerlegen Sie: der Graph $(V, E_D \cup E_B)$ enthält einen Kreis.

Aufgabe 5.6

Eine Brücke in einem zusammenhängenden Graphen G = (V, E) ist eine Kante $e \in E$, für die der Graph $G - e := (V, E \setminus \{e\})$ nicht mehr zusammenhängend ist. Beweisen oder widerlegen Sie, dass ein zusammenhängender Graph, in dem alle Knoten geraden Grad haben, keine Brücken enthält.

Aufgabe 5.7

Implementieren Sie die Algorithmen von Jarnik und Kruskal zur Bestimmung minimaler aufspannender Bäume.